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Why do we effectivize?

Why do we effectivize a mathematical concept A?

Because effA can be useful when dealing only with effective
objects

Because effA approximates A (hopefully in a known an useful
way)

Because for interesting and simple objects effA is equivalent
to the classical concept A

Is this all?
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Why do we effectivize a mathematical concept A?

Because relativization of effA gives you back A



Today

Hausdorff dimension

Lutz’s effective dimension for Cantor and Euclidean spaces

Point-to-set principle

Effective dimension and point-to-set principle in separable
spaces



Hausdorff definition of dimension

Let ρ be a metric on a set X .

For E ⊆ X and δ > 0, a δ-cover of E is a collection U such
that for all U ∈ U , diam(U) < δ and

E ⊆
⋃
U∈U

U.

For s ≥ 0,
Hs(E ) = limδ→0 infU is a δ-cover of E

∑
U∈U diam(U)s

The Hausdorff dimension of E ⊆ X is
dimH(E ) = inf {s |Hs(E ) = 0} .



Lutz’s effective Hausdorff dimension: Kolmogorov
complexity

Definition

For a finite string w , and a universal Turing machine U,

KU(w) = {|p| |U(p) = w }

This concept is invariant on U up to an additive constant, we drop
the U.

K(w) is the length of the shortest description from which w
can be computably recoverered.



Lutz’s effective Hausdorff dimension: Kolmogorov
complexity

Definition

For a finite string w , and a universal Turing machine U,

KU(w) = {|p| |U(p) = w }

This concept is invariant on U up to an additive constant, we drop
the U.
K(w) is the length of the shortest description from which w
can be computably recoverered.



Effective dimension in Cantor space

{0, 1}∞ is the set of infinite binary sequences

For x ∈ {0, 1}∞, x � n the the length n finite prefix of x

Definition

For every x ∈ {0, 1}∞, E ⊆ {0, 1}∞,

cdim(x) = lim inf
n

K(x � n)

n
.

cdim(E ) = sup
x∈E

cdim(x).

Lutz original definition of constructive dimension uses
gambling, this is a characterization.
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Effective dimension in Cantor and Euclidean spaces

Very robust concepts, they can be defined using

measure theory
gambling
information theory

Resource-bounded versions are natural and useful

It is non necessarily zero and meaningful on singletons.

By absolute stability effective dimension can be
investigated in terms of the dimension of individual
points.

For Σ0
2 sets, constructive dimension is exactly Hausdorff

dimension ...

For a while this was good enough
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How effective dimension can be used for classical geometry

Classical dimension can be characterized in terms of effective
dimension (point-to-set principle)

Theorem (J.Lutz, N.Lutz 2017)

For every E ⊆ {0, 1}∞,

dimH(E ) = min
B⊆{0,1}∗

cdimB(E ).

This theorem allows us to prove classical dimension
results using Kolmogorov complexity, already a few very
interesting ones (N.Lutz-Stull on generalized Furstenberg sets,
N. Lutz on the intersection formula)

We can now investigate the dimension of a set in terms of the
dimension of its points
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Example of a result using the point-to-set principle

Theorem

(Marstrand 1954, Mattila 1975) Let E ⊆ Rn be an analytic set.
Then for almost every direction e

dimH(projeE ) = min{dimH(E ), 1}.

Theorem

(N. Lutz 2017) Let E ⊆ Rn be a set with dimH(E ) = dimp(E ).
Then for almost every direction e

dimH(projeE ) = min{dimH(E ), 1}.

We want to use the point to set principle in other spaces
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Kolmogorov complexity in a separable space

Let (X , ρ) be a separable metric space. Let D be a countable
dense set and f : {0, 1}∗ → D be surjective

What is the information content of x ∈ X ?

Definition

Let x ∈ X , r ∈ N. The Kolmogorov complexity of x at precision r is

Kf
r (x) = inf

{
K(w)

∣∣ ρ(x , f (w)) ≤ 2−r
}
.

This is an extension of the notion used for reals. For computable
metric spaces the idea is inherent in (Melnikov Nies 2013) work on
K-trivials
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Effective dimension in a separable space

(X , ρ) is a separable metric space, D is a countable dense set, and
f : {0, 1}∗ → D surjective

Definition

Let x ∈ X ,

cdimf (x) = lim inf
r

Kf
r (x)

r
.

Let E ⊆ X ,
cdimf (E ) = sup

x∈E
cdimf (x).

Both definitions relativize to any oracle B by using KB(w)
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Point to set principle for separable X

Let X be a separable metric space. Let D be a countable dense set
and f : {0, 1}∗ → D be surjective.

Theorem (Main result)

Let E ⊆ X . Then

dimH(E ) = min
B⊆{0,1}∗

cdimf ,B(E ).



Example: Hilbert cube

Let H = [0, 1]N with metric

ρ((an), (bn)) =
∑
n

|bn − an|2−n.

We can take the dense set of finite sequences

S = {(an) |an = 0 a.e.n} .

Then for each point

Kr ((an)) ≤
r+1∑
i=1

2Kr+1(ai ).

It is clear that for some (an), Kr ((an)) ≥ r2, so there are
points of infinite cdim in H.
Examples of points with finite dimension, when (an) is
bounded.
For unbounded f , there is an ≤ f (n) with cdim((an)) =∞.
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Conclusions

Lutz effectivization of Hausdorff dimension can be generalized
to all separable metric spaces via Kolmogorov complexity

The point-to-set principle allows us to capture classical
Hausdorff dimension through the pointwise analysis of the
dimension of sets

Let us use it to solve open problems in fractal geometry
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Effective dimension in a separable space

The effectivization is done from information content

It can be done from measure

For spaces with a suitable regularity condition it can be done
through gambling (pretty useful for resource-bounds)

Similarly packing dimension and exact dimension can be
effectivized for all separable spaces
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Exact dimension: Kolmogorov complexity characterization

Let g be increasing in both arguments. For s ≥ 0,
Hg ,s(E ) = limδ→0 infU is a δ-cover of E

∑
U∈U g(s, diam(U))

dim
(g)
H (E ) = inf {s |Hg ,s(E ) = 0} .

Definition

Let X be a separable metric space. Let x ∈ X ,

cdimf
g (x) = inf

{
s
∣∣∣∃∞r Kf

r (x) ≤ − log(g(s, 2−r ))
}
.

Theorem

Let E ⊆ X . Then

dim
(g)
H (E ) = min

B⊆{0,1}∗
cdimf ,B

g (E ).
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