Quantum Solovay randomness

Tejas Bhojraj

UW-Madison

Waterloo, June 2018

Tejas Bhojraj (UW-Madison)

Quantum Solovay randomness

Waterloo, June 2018

Reference: 'Martin-Löf random quantum states', by Nies and Scholz. I will first discuss this paper and then outline some answers to the questions posed in it.

All the quantum physics needed for this talk

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• First, a sketch. We will formalize it soon.

- First, a sketch. We will formalize it soon.
- A quantum mechanical system is a superposition of 'classical' states.

- First, a sketch. We will formalize it soon.
- A quantum mechanical system is a superposition of 'classical' states.
- It's dimension is the number of classical states it is a superposition of.

- First, a sketch. We will formalize it soon.
- A quantum mechanical system is a superposition of 'classical' states.
- It's dimension is the number of classical states it is a superposition of.
- A measurement of the system collapses it into one of the classical states. Measuring a classical state does not cause any collapse. Hence they are called 'classical'.

- First, a sketch. We will formalize it soon.
- A quantum mechanical system is a superposition of 'classical' states.
- It's dimension is the number of classical states it is a superposition of.
- A measurement of the system collapses it into one of the classical states. Measuring a classical state does not cause any collapse. Hence they are called 'classical'.
- Let us formalize this.

- First, a sketch. We will formalize it soon.
- A quantum mechanical system is a superposition of 'classical' states.
- It's dimension is the number of classical states it is a superposition of.
- A measurement of the system collapses it into one of the classical states. Measuring a classical state does not cause any collapse. Hence they are called 'classical'.
- Let us formalize this.
- We represent a n-dimensional system by a matrix ψψ* where ψ ∈ Cⁿ is a unit column vector (ψ* is the complex conjugate transpose of ψ).

- First, a sketch. We will formalize it soon.
- A quantum mechanical system is a superposition of 'classical' states.
- It's dimension is the number of classical states it is a superposition of.
- A measurement of the system collapses it into one of the classical states. Measuring a classical state does not cause any collapse. Hence they are called 'classical'.
- Let us formalize this.
- We represent a n-dimensional system by a matrix ψψ* where ψ ∈ Cⁿ is a unit column vector (ψ* is the complex conjugate transpose of ψ).
- Fix a orthonormal basis $b_1, ..., b_n$ of \mathbb{C}^n . The $b_i b_i^*$ s will be the classical states.

- First, a sketch. We will formalize it soon.
- A quantum mechanical system is a superposition of 'classical' states.
- It's dimension is the number of classical states it is a superposition of.
- A measurement of the system collapses it into one of the classical states. Measuring a classical state does not cause any collapse. Hence they are called 'classical'.
- Let us formalize this.
- We represent a n-dimensional system by a matrix ψψ* where ψ ∈ Cⁿ is a unit column vector (ψ* is the complex conjugate transpose of ψ).
- Fix a orthonormal basis $b_1, ..., b_n$ of \mathbb{C}^n . The $b_i b_i^*$ s will be the classical states.
- A measurement is represented by a matrix *H* with eigenvectors $b_1, ..., b_n$ with eigenvalues equalling 0 or 1. So, *H* is a Hermitian projection.

Tejas Bhojraj (UW-Madison)

< A

æ

• Measuring H on $\psi\psi^*$ causes the system to collapse to one of the classical states $b_i b_i^*$ and the outcome of the measurement is e_i where $Hb_i = e_i b_i$ (i.e, the eigenvalue corresponding to b_i .)

- Measuring H on $\psi\psi^*$ causes the system to collapse to one of the classical states $b_i b_i^*$ and the outcome of the measurement is e_i where $Hb_i = e_i b_i$ (i.e, the eigenvalue corresponding to b_i .)
- The probability of collapsing $\psi\psi^*$ to $b_ib_i^*$ on measurement is $|\langle\psi, b_i\rangle|^2$.

- Measuring H on $\psi\psi^*$ causes the system to collapse to one of the classical states $b_i b_i^*$ and the outcome of the measurement is e_i where $Hb_i = e_i b_i$ (i.e, the eigenvalue corresponding to b_i .)
- The probability of collapsing $\psi\psi^*$ to $b_ib_i^*$ on measurement is $|\langle\psi, b_i\rangle|^2$.
- By orthonormality, we see that measurements do not collapse classical states.

- Measuring H on $\psi\psi^*$ causes the system to collapse to one of the classical states $b_i b_i^*$ and the outcome of the measurement is e_i where $Hb_i = e_i b_i$ (i.e, the eigenvalue corresponding to b_i .)
- The probability of collapsing $\psi\psi^*$ to $b_ib_i^*$ on measurement is $|\langle\psi, b_i\rangle|^2$.
- By orthonormality, we see that measurements do not collapse classical states.
- One can check that the expected value of measuring H on $\psi\psi^*$ is Trace($H\psi\psi^*$).

• A qubit is a 2-dimensional system.

- I A P

3

- A qubit is a 2-dimensional system.
- Bra-Ket notation: denote a column vector v by $|v\rangle$ and v^* by $\langle v|$.

э

- A qubit is a 2-dimensional system.
- Bra-Ket notation: denote a column vector v by $|v\rangle$ and v^* by $\langle v|$.
- Let H be a Hermitian operator on \mathbb{C}^2 with eigenpairs $(V_1, 1)$ and $(V_0, 0)$ with V_1 and V_0 forming a orthonormal basis.

- A qubit is a 2-dimensional system.
- Bra-Ket notation: denote a column vector v by $|v\rangle$ and v^* by $\langle v|$.
- Let H be a Hermitian operator on \mathbb{C}^2 with eigenpairs $(V_1, 1)$ and $(V_0, 0)$ with V_1 and V_0 forming a orthonormal basis.
- Denote V_0, V_1 by $|0\rangle$ and $|1\rangle$.

- A qubit is a 2-dimensional system.
- Bra-Ket notation: denote a column vector v by $|v\rangle$ and v^* by $\langle v|$.
- Let H be a Hermitian operator on \mathbb{C}^2 with eigenpairs $(V_1, 1)$ and $(V_0, 0)$ with V_1 and V_0 forming a orthonormal basis.
- Denote V_0, V_1 by $|0\rangle$ and $|1\rangle$.
- So, (C²)^{⊗n} := H_n has a orthonormal basis comprised of elements of the form: Fix a σ ∈ 2ⁿ. The basis vector given by this σ is

$$|\sigma(\mathbf{0})\rangle \otimes |\sigma(\mathbf{1})\rangle \otimes ... \otimes |\sigma(n-\mathbf{1})\rangle = \bigotimes_{i < n} |\sigma(i)\rangle := |\sigma\rangle$$

- A qubit is a 2-dimensional system.
- Bra-Ket notation: denote a column vector v by $|v\rangle$ and v^* by $\langle v|$.
- Let H be a Hermitian operator on \mathbb{C}^2 with eigenpairs $(V_1, 1)$ and $(V_0, 0)$ with V_1 and V_0 forming a orthonormal basis.
- Denote V_0, V_1 by $|0\rangle$ and $|1\rangle$.
- So, (C²)^{⊗n} := H_n has a orthonormal basis comprised of elements of the form: Fix a σ ∈ 2ⁿ. The basis vector given by this σ is

$$|\sigma(0)\rangle \otimes |\sigma(1)\rangle \otimes ... \otimes |\sigma(n-1)\rangle = \bigotimes_{i < n} |\sigma(i)\rangle := |\sigma\rangle$$

If |ψ⟩ ∈ H_n is a unit vector, the matrix |ψ⟩⟨ψ| is said to be a *pure state*.

- A qubit is a 2-dimensional system.
- Bra-Ket notation: denote a column vector v by $|v\rangle$ and v^* by $\langle v|$.
- Let H be a Hermitian operator on \mathbb{C}^2 with eigenpairs $(V_1, 1)$ and $(V_0, 0)$ with V_1 and V_0 forming a orthonormal basis.
- Denote V_0, V_1 by $|0\rangle$ and $|1\rangle$.
- So, (C²)^{⊗n} := H_n has a orthonormal basis comprised of elements of the form: Fix a σ ∈ 2ⁿ. The basis vector given by this σ is

$$|\sigma(0)\rangle \otimes |\sigma(1)\rangle \otimes ... \otimes |\sigma(n-1)\rangle = \bigotimes_{i < n} |\sigma(i)\rangle := |\sigma\rangle$$

- If |ψ⟩ ∈ H_n is a unit vector, the matrix |ψ⟩⟨ψ| is said to be a *pure state*.
- A mixed state is a convex combination of 2 or more pure states.

- A qubit is a 2-dimensional system.
- Bra-Ket notation: denote a column vector v by $|v\rangle$ and v^* by $\langle v|$.
- Let H be a Hermitian operator on \mathbb{C}^2 with eigenpairs $(V_1, 1)$ and $(V_0, 0)$ with V_1 and V_0 forming a orthonormal basis.
- Denote V_0, V_1 by $|0\rangle$ and $|1\rangle$.
- So, (C²)^{⊗n} := H_n has a orthonormal basis comprised of elements of the form: Fix a σ ∈ 2ⁿ. The basis vector given by this σ is

$$|\sigma(0)\rangle \otimes |\sigma(1)\rangle \otimes ... \otimes |\sigma(n-1)\rangle = \bigotimes_{i < n} |\sigma(i)\rangle := |\sigma\rangle$$

- If |ψ⟩ ∈ H_n is a unit vector, the matrix |ψ⟩⟨ψ| is said to be a *pure state*.
- A mixed state is a convex combination of 2 or more pure states.
- A pure state is a *single* quantum system while a mixed state is a probabilistic mixture of pure states.

Tejas Bhojraj (UW-Madison)

• The mixed and pure states are called density matrices.

э

- The mixed and pure states are called density matrices.
- In fact, *any* Hermitian, positive semidefinite matrix with trace = 1 gives a state and is a density matrix.

- The mixed and pure states are called density matrices.
- In fact, *any* Hermitian, positive semidefinite matrix with trace = 1 gives a state and is a density matrix.
- If a Hermitian ρ on H_n has Trace(ρ)=1, then it has a complete orthonormal set of eigenvectors (ψ_i)_{i<2ⁿ}. If the eigenpairs are (α_i, ψ_i), then

$$\rho = \sum_{i < 2^n} \alpha_i |\psi_i\rangle \langle \psi_i| \tag{1}$$

The sum is convex as $1=Tr(\rho)=\sum_i \alpha_i$. So, ρ gives a state.

- The mixed and pure states are called density matrices.
- In fact, *any* Hermitian, positive semidefinite matrix with trace = 1 gives a state and is a density matrix.
- If a Hermitian ρ on H_n has Trace(ρ)=1, then it has a complete orthonormal set of eigenvectors (ψ_i)_{i<2ⁿ}. If the eigenpairs are (α_i, ψ_i), then

$$\rho = \sum_{i < 2^n} \alpha_i |\psi_i\rangle \langle \psi_i | \tag{1}$$

The sum is convex as $1=Tr(\rho)=\sum_i \alpha_i$. So, ρ gives a state.

• The density matrix $\rho = \sum_{i < 2^n} \alpha_i |\psi_i\rangle \langle \psi_i|$ gives a system which is in $|\psi_i\rangle \langle \psi_i|$ with probability α_i

- The mixed and pure states are called density matrices.
- In fact, *any* Hermitian, positive semidefinite matrix with trace = 1 gives a state and is a density matrix.
- If a Hermitian ρ on H_n has Trace(ρ)=1, then it has a complete orthonormal set of eigenvectors (ψ_i)_{i<2ⁿ}. If the eigenpairs are (α_i, ψ_i), then

$$\rho = \sum_{i < 2^n} \alpha_i |\psi_i\rangle \langle \psi_i | \tag{1}$$

The sum is convex as $1=Tr(\rho)=\sum_i \alpha_i$. So, ρ gives a state.

- The density matrix $\rho = \sum_{i < 2^n} \alpha_i |\psi_i\rangle \langle \psi_i|$ gives a system which is in $|\psi_i\rangle \langle \psi_i|$ with probability α_i
- Notation: $L(H_n)$ denotes the space of 2^n by 2^n matrices.

• So far we have seen: a system of n qubits is modeled by a density matrix in $L(H_n)$.

- So far we have seen: a system of n qubits is modeled by a density matrix in $L(H_n)$.
- A system in $H_{n+1} = H_n \otimes H_1$ which is a composite of systems $\sigma \in L(H_n)$ and $\tau \in L(H_1)$ is described by $\rho = \sigma \otimes \tau \in L(H_n) \otimes L(H_1)$.

- So far we have seen: a system of n qubits is modeled by a density matrix in $L(H_n)$.
- A system in $H_{n+1} = H_n \otimes H_1$ which is a composite of systems $\sigma \in L(H_n)$ and $\tau \in L(H_1)$ is described by $\rho = \sigma \otimes \tau \in L(H_n) \otimes L(H_1)$.
- So, a composite system is a product state (pure tensor).

- So far we have seen: a system of n qubits is modeled by a density matrix in $L(H_n)$.
- A system in $H_{n+1} = H_n \otimes H_1$ which is a composite of systems $\sigma \in L(H_n)$ and $\tau \in L(H_1)$ is described by $\rho = \sigma \otimes \tau \in L(H_n) \otimes L(H_1)$.
- So, a composite system is a product state (pure tensor).
- The pure tensors do not exhaust the set of density matrices in $L(H_{n+1})$.

- So far we have seen: a system of n qubits is modeled by a density matrix in $L(H_n)$.
- A system in $H_{n+1} = H_n \otimes H_1$ which is a composite of systems $\sigma \in L(H_n)$ and $\tau \in L(H_1)$ is described by $\rho = \sigma \otimes \tau \in L(H_n) \otimes L(H_1)$.
- So, a composite system is a product state (pure tensor).
- The pure tensors do not exhaust the set of density matrices in $L(H_{n+1})$.
- Take a $\rho \in L(H_{n+1})$ which is not a pure tensor.

- So far we have seen: a system of n qubits is modeled by a density matrix in $L(H_n)$.
- A system in $H_{n+1} = H_n \otimes H_1$ which is a composite of systems $\sigma \in L(H_n)$ and $\tau \in L(H_1)$ is described by $\rho = \sigma \otimes \tau \in L(H_n) \otimes L(H_1)$.
- So, a composite system is a product state (pure tensor).
- The pure tensors do not exhaust the set of density matrices in $L(H_{n+1})$.
- Take a $\rho \in L(H_{n+1})$ which is not a pure tensor.
- It is not a composite of states in $L(H_n)$ and $L(H_1)$.
- So far we have seen: a system of n qubits is modeled by a density matrix in $L(H_n)$.
- A system in $H_{n+1} = H_n \otimes H_1$ which is a composite of systems $\sigma \in L(H_n)$ and $\tau \in L(H_1)$ is described by $\rho = \sigma \otimes \tau \in L(H_n) \otimes L(H_1)$.
- So, a composite system is a product state (pure tensor).
- The pure tensors do not exhaust the set of density matrices in $L(H_{n+1})$.
- Take a $\rho \in L(H_{n+1})$ which is not a pure tensor.
- It is not a composite of states in $L(H_n)$ and $L(H_1)$.
- Such a ρ is called entangled.

Tejas Bhojraj (UW-Madison)

イロト イ団ト イヨト イヨト

3

• Given $\rho \in L_{n+1}$ we want to find the state given by ignoring the last qubit.

э

- Given $\rho \in L_{n+1}$ we want to find the state given by ignoring the last qubit.
- What does 'ignoring' mean?

- Given $\rho \in L_{n+1}$ we want to find the state given by ignoring the last qubit.
- What does 'ignoring' mean?
- It means we need a $\tau \in L_n$ which describes measurements of the first n qubits of ρ .

- Given $\rho \in L_{n+1}$ we want to find the state given by ignoring the last qubit.
- What does 'ignoring' mean?
- It means we need a $\tau \in L_n$ which describes measurements of the first n qubits of ρ .
- I.e, we need a τ such that for any hermitian $O \in L_n$,

$$Tr(\tau O) = Tr(\rho(O \otimes I)).$$

- Given $\rho \in L_{n+1}$ we want to find the state given by ignoring the last qubit.
- What does 'ignoring' mean?
- It means we need a $\tau \in L_n$ which describes measurements of the first n qubits of ρ .
- I.e, we need a τ such that for any hermitian $O \in L_n$,

$$Tr(\tau O) = Tr(\rho(O \otimes I)).$$

• (Recall: The expectation of measuring O on ϕ is $Tr(\phi O)$.)

- Given $\rho \in L_{n+1}$ we want to find the state given by ignoring the last qubit.
- What does 'ignoring' mean?
- It means we need a $\tau \in L_n$ which describes measurements of the first n qubits of ρ .
- I.e, we need a τ such that for any hermitian $O \in L_n$,

$$Tr(\tau O) = Tr(\rho(O \otimes I)).$$

- (Recall: The expectation of measuring O on ϕ is $Tr(\phi O)$.)
- If $\rho = \lambda \otimes \sigma$ for a $\lambda \in L_n$ and $\sigma \in L_1$ then,

$$Tr(\rho(O \otimes I)) = Tr(\lambda O \otimes \sigma I) = Tr(\lambda O) Tr(\sigma) = Tr(\lambda O)$$

So, $\tau = \lambda$ works.

 $\bullet~$ If ρ is entangled, the choice of τ is not so obvious

• Denote $L(H_n)$ by L_n . Define

$$T_1: L_{n+1} \longrightarrow L_n$$

by $T_1(A \otimes B) := A * Tr(B)$ for any $A \in L_n, B \in L_1$ and then extending it linearly.

• Denote $L(H_n)$ by L_n . Define

$$T_1: L_{n+1} \longrightarrow L_n$$

by $T_1(A \otimes B) := A * Tr(B)$ for any $A \in L_n, B \in L_1$ and then extending it linearly.

• This defines T_1 since if $\rho \in L_{n+1}$, it is a *finite sum* of the form

$$\rho = \sum_{i} \alpha_i (A_i \otimes B_i)$$

for scalars α_i , $A_i \in L_n$ and $B_i \in L_1$. (After modding out by the usual \equiv)

• Denote $L(H_n)$ by L_n . Define

$$T_1: L_{n+1} \longrightarrow L_n$$

by $T_1(A \otimes B) := A * Tr(B)$ for any $A \in L_n, B \in L_1$ and then extending it linearly.

• This defines T_1 since if $\rho \in L_{n+1}$, it is a *finite sum* of the form

$$\rho = \sum_{i} \alpha_i (A_i \otimes B_i)$$

for scalars α_i , $A_i \in L_n$ and $B_i \in L_1$.(After modding out by the usual \equiv) • It turns out that $T_1(\rho)$ is the required τ • There is a arrangement of the bases of H_n which makes computing the partial trace easy.

э

- There is a arrangement of the bases of H_n which makes computing the partial trace easy.
- Details (skip)

Recall that H_n has a orthonormal basis comprised of elements of the form

$$\bigotimes_{i < n} |\sigma(i)
angle := |\sigma
angle$$
 for a $\sigma \in 2^n$

Order them as follows: given $\sigma < \tau$, define

3
$$\sigma 0 < \sigma 1$$

3 $\sigma 1 > \tau 0$
3 $\sigma i < \tau i$ for $i = 0, 1$
For $A \in L(H_n), B \in L(H_1)$,

$$A \otimes B = \begin{bmatrix} Ab_{00} & Ab_{01} \\ Ab_{10} & Ab_{11} \end{bmatrix}$$
 if $B = \begin{bmatrix} b_{00} & b_{01} \\ b_{10} & b_{11} \end{bmatrix}$

Finding the Partial Trace of an Operator from it's Matrix

• Let $\rho \in L_{n+1}$

$$\rho = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

be with each block in L_n

Tejas Bhojraj (UW-Madison)

• Let $\rho \in L_{n+1}$

$$\rho = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

be with each block in L_n

• By the arrangement of the basis elements, we see that

$$T_1(\rho) = A + D$$

Tejas Bhojraj (UW-Madison)

• Let
$$\psi = (|1\rangle \otimes |1\rangle + |0\rangle \otimes |0\rangle)/\sqrt{2} = (|11\rangle + |00\rangle)/\sqrt{2}$$

э

- Let $\psi = (|1\rangle \otimes |1\rangle + |0\rangle \otimes |0\rangle)/\sqrt{2} = (|11\rangle + |00\rangle)/\sqrt{2}$
- The pure state representing it is

$$|\psi\rangle\big\langle\psi|=(|00\big\rangle\big\langle00|+|00\big\rangle\big\langle11|+|11\big\rangle\big\langle00|+|11\big\rangle\big\langle11|)/2$$

• Let $\psi = (|1\rangle \otimes |1\rangle + |0\rangle \otimes |0\rangle)/\sqrt{2} = (|11\rangle + |00\rangle)/\sqrt{2}$

• The pure state representing it is

$$|\psi\rangle\langle\psi|=(|00\rangle\langle00|+|00\rangle\langle11|+|11\rangle\langle00|+|11\rangle\langle11|)/2$$

It's matrix is

$^{-}1/2$	0	0	1/2
0	0	0	0
0	0	0	0
1/2	0	0	1/2

and partial trace is

$$T_1(\rho) = \begin{bmatrix} 1/2 & 0\\ 0 & 1/2 \end{bmatrix}$$

Tejas Bhojraj (UW-Madison)

Waterloo, June 2018

• Let $\psi = (|1\rangle \otimes |1\rangle + |0\rangle \otimes |0\rangle)/\sqrt{2} = (|11\rangle + |00\rangle)/\sqrt{2}$

• The pure state representing it is

$$|\psi\rangle\langle\psi|=(|00\rangle\langle00|+|00\rangle\langle11|+|11\rangle\langle00|+|11\rangle\langle11|)/2$$

It's matrix is

1/2	0	0	1/2
0	0	0	0
0	0	0	0
1/2	0	0	1/2

and partial trace is

$$T_1(\rho) = \begin{bmatrix} 1/2 & 0 \\ 0 & 1/2 \end{bmatrix}$$

• which has rank = 2 and so is not a pure state. (Pure states have rank 1)

Table of Contents

Quantum Mechanics

- The Density Matrix
- Partial Trace

Quantum Cantor Space

- Coherent Sequences of Density Matrices
- Quantum Σ_1^0 -Classes

3 Randomness

- Quantum Martin-Löf Randomness
- Computable states can be random

Definitions

- Quantum Solovay Randomness is equivalent to q-MLR
- 6 The set of q-MLR states is convex
 - Construction
 - Verification

• Now we consider a system of countably infinitely many qubits.

э

- Now we consider a system of countably infinitely many qubits.
- For each n, let $T_n : L_n \longrightarrow L_{n-1}$ be the partial trace.

- Now we consider a system of countably infinitely many qubits.
- For each n, let $T_n : L_n \longrightarrow L_{n-1}$ be the partial trace.
- A sequence of density matrices, $(S_n)_{n \in \omega}$ with $S_n \in L_n$ is *coherent* if $T_n(S_n) = S_{n-1}$ for all n.

- Now we consider a system of countably infinitely many qubits.
- For each n, let $T_n : L_n \longrightarrow L_{n-1}$ be the partial trace.
- A sequence of density matrices, $(S_n)_{n\in\omega}$ with $S_n\in L_n$ is coherent if $T_n(S_n)=S_{n-1}$ for all n.
- It models a sequence of infinitely many qubits where for all n, the first n qubits are obtained by ignoring the last qubit from the first n + 1 qubits.

- Now we consider a system of countably infinitely many qubits.
- For each n, let $T_n : L_n \longrightarrow L_{n-1}$ be the partial trace.
- A sequence of density matrices, $(S_n)_{n \in \omega}$ with $S_n \in L_n$ is coherent if $T_n(S_n) = S_{n-1}$ for all n.
- It models a sequence of infinitely many qubits where for all n, the first n qubits are obtained by ignoring the last qubit from the first n + 1 qubits.
- The set of such coherent sequences is called quantum Cantor space.

- Now we consider a system of countably infinitely many qubits.
- For each n, let $T_n : L_n \longrightarrow L_{n-1}$ be the partial trace.
- A sequence of density matrices, $(S_n)_{n \in \omega}$ with $S_n \in L_n$ is coherent if $T_n(S_n) = S_{n-1}$ for all n.
- It models a sequence of infinitely many qubits where for all n, the first n qubits are obtained by ignoring the last qubit from the first n + 1 qubits.
- The set of such coherent sequences is called quantum Cantor space.
- A coherent sequence will also be called a state.

Quantum Σ_1^0 Classes

• A Σ_1^0 class $S \subseteq 2^\omega$ can be written as

$$S = \bigcup_n \llbracket A_n \rrbracket$$

where

A_n ⊆ 2ⁿ
An index for A_n as a computable set can be obtained uniformly in n.
[[A_n]] ⊆ [[A_{n+1}]]

Quantum Σ_1^0 Classes

• A Σ^0_1 class $S\subseteq 2^\omega$ can be written as

$$S = \bigcup_n \llbracket A_n \rrbracket$$

where

- A_n ⊆ 2ⁿ
 An index for A_n as a computable set can be obtained uniformly in n.
 [A_n] ⊆ [A_{n+1}]
- Extend this to the quantum setting.

• A Σ^0_1 class $S\subseteq 2^\omega$ can be written as

$$S = \bigcup_n \llbracket A_n \rrbracket$$

where

 $A_n \subseteq 2^n$

3 An index for A_n as a computable set can be obtained uniformly in n.

$$A_n \subseteq A_{n+1}$$

- Extend this to the quantum setting.
- A Hermitian projection $P \in L_n$ is said to be *special* if it's entries are in \mathbb{C}_{alg} (roots of \mathbb{Q} polynomials); hence computable.

•

 $S = (P_n)_n$ a sequence of special projections is a q- Σ_1^0 class if $P_n \in L_n$

2 An index for P_n as a computable matrix can be obtained uniformly in n.

$$ong(P_n) \subseteq \operatorname{rng}(P_{n+1}).$$

•

 $S = (P_n)_n$ a sequence of special projections is a q- Σ_1^0 class if $P_n \in L_n$

- 2 An index for P_n as a computable matrix can be obtained uniformly in n.
- **3** $rng(P_n) \subseteq rng(P_{n+1}).$
- Let $\rho = (\rho_n)_n$ be a state.

•

 $S=(P_n)_n$ a sequence of special projections is a q- Σ^0_1 class if ${\bf O}$ $P_n\in L_n$

- 2 An index for P_n as a computable matrix can be obtained uniformly in n.
- **3** $rng(P_n) \subseteq rng(P_{n+1}).$
- Let $\rho = (\rho_n)_n$ be a state.
- Each $P_n \in L_n$ is a measurement of the first *n* qubits.

 $S = (P_n)_n$ a sequence of special projections is a q- Σ_1^0 class if $P_n \in L_n$

2 An index for P_n as a computable matrix can be obtained uniformly in n.

$$ong(P_n) \subseteq \operatorname{rng}(P_{n+1}).$$

• Let
$$\rho = (\rho_n)_n$$
 be a state.

- Each $P_n \in L_n$ is a measurement of the first *n* qubits.
- So, S is a sequence of measurements on longer and longer initial segments of a state, ρ.

Definition

٠

$$\rho(S) := \lim_{n} Tr(\rho_n P_n) = \sup_{n} Tr(\rho_n P_n)$$

• Take the classical Σ_1^0 class S as before.

$$S = \bigcup_n \llbracket A_n \rrbracket$$

The measure of S is $\lim_{n \to \infty} (2^{-n}|A_n|)$.

• Take the classical Σ_1^0 class S as before.

$$S = \bigcup_n \llbracket A_n \rrbracket$$

The measure of S is $\lim_{n \to \infty} (2^{-n}|A_n|)$.

• Analogously, we define the 'measure' of $G = (P_n)_n$, a q- Σ_1^0 to be $\lim_{n \to \infty} 2^{-n} \operatorname{rank}(P_n)$.

• Take the classical Σ_1^0 class S as before.

$$S = \bigcup_n \llbracket A_n \rrbracket$$

The measure of S is $\lim_{n \to \infty} (2^{-n} |A_n|)$.

- Analogously, we define the 'measure' of $G = (P_n)_n$, a q- Σ_1^0 to be $\lim_{n \to \infty} 2^{-n} \operatorname{rank}(P_n)$.
- If we define the state $\tau := (2^{-n}I_{2^n})_n$, then $\tau(G) = \lim_{n \to \infty} 2^{-n} \operatorname{rank}(P_n)$.
• Take the classical Σ_1^0 class S as before.

$$S = \bigcup_n \llbracket A_n \rrbracket$$

The measure of S is $\lim_{n \to \infty} (2^{-n}|A_n|)$.

- Analogously, we define the 'measure' of $G = (P_n)_n$, a q- Σ_1^0 to be $\lim_{n \to \infty} 2^{-n} \operatorname{rank}(P_n)$.
- If we define the state $\tau := (2^{-n}I_{2^n})_n$, then $\tau(G) = \lim_{n \to \infty} 2^{-n} \operatorname{rank}(P_n)$.
- With this notion of measure, we can finally define randomness...

Table of Contents

Quantum Mechanics

- The Density Matrix
- Partial Trace

Quantum Cantor Space

- Coherent Sequences of Density Matrices
- Quantum Σ_1^0 -Classes

3 Randomness

- Quantum Martin-Löf Randomness
- Computable states can be random

Definitions

- Quantum Solovay Randomness is equivalent to q-MLR
- 6 The set of q-MLR states is convex
 - Construction
 - Verification

Definition: quantum-Martin-Löf test (q-MLT)

A uniformly computable sequence $(G_m)_m$ of $q - \Sigma_0^1$ classes is a (q-MLT) if $\tau(G_m) \leq 2^{-m}$ for each m.

Definition: Passing and Failing a q-MLT at order δ

A state ρ fails a q-MLT $G = (G_m)_m$ at order δ if $\rho(G_m) > \delta$ for each m. ρ passes G at order δ if it does not fail G at order δ . I.e, $\exists m, \rho(G_m) \leq \delta$.

Definition: Passing a q-MLT

 ρ passes a q-MLT $G = (G_m)_m$ if it passes G at order δ for all $\delta > 0$. I.e, $inf_m\rho(G_m) = 0$. ρ is quantum-Martin-Löf Random (q-MLR) if it passes each q-MLT.

A B M A B M

• The state $\tau = (2^{-n}I_{2^n})_n$ is computable.

- The state $\tau = (2^{-n}I_{2^n})_n$ is computable.
- By definition of a q-MLT, τ is q-MLR.

- The state $\tau = (2^{-n}I_{2^n})_n$ is computable.
- By definition of a q-MLT, τ is q-MLR.
- Work in progress: Characterize computable q-MLR states.

- The state $\tau = (2^{-n}I_{2^n})_n$ is computable.
- By definition of a q-MLT, τ is q-MLR.
- Work in progress: Characterize computable q-MLR states.
- If ρ_n ∈ L_n is a density matrix, its eigenvalues (α_i)_{i≤2ⁿ} form a probability distribution. Denote the entropy of this distribution by H(ρ_n).

- The state $\tau = (2^{-n}I_{2^n})_n$ is computable.
- By definition of a q-MLT, τ is q-MLR.
- Work in progress: Characterize computable q-MLR states.
- If $\rho_n \in L_n$ is a density matrix, its eigenvalues $(\alpha_i)_{i \leq 2^n}$ form a probability distribution. Denote the entropy of this distribution by $H(\rho_n)$.
- Each element of τ is uniform and so has maximum entropy.

- The state $\tau = (2^{-n}I_{2^n})_n$ is computable.
- By definition of a q-MLT, τ is q-MLR.
- Work in progress: Characterize computable q-MLR states.
- If $\rho_n \in L_n$ is a density matrix, its eigenvalues $(\alpha_i)_{i \leq 2^n}$ form a probability distribution. Denote the entropy of this distribution by $H(\rho_n)$.
- Each element of τ is uniform and so has maximum entropy.
- Entropy may provide a characterization?

- The state $\tau = (2^{-n}I_{2^n})_n$ is computable.
- By definition of a q-MLT, τ is q-MLR.
- Work in progress: Characterize computable q-MLR states.
- If ρ_n ∈ L_n is a density matrix, its eigenvalues (α_i)_{i≤2ⁿ} form a probability distribution. Denote the entropy of this distribution by H(ρ_n).
- Each element of τ is uniform and so has maximum entropy.
- Entropy may provide a characterization?
- Partial progress: If $\rho = (\rho_n)_n$ is computable, then

$$\exists c \forall n [H(\rho_n) > n - c] \Rightarrow \rho \text{ is } q\text{-MLR} \Rightarrow \mathsf{liminf}_n [H(\rho_n)/n] = 1.$$

• Q (Nies and Scholz): Is there a notion of quantum Solovay Randomness (q-SR)? If so, is it equivalent to q-MLR?

э

- Q (Nies and Scholz): Is there a notion of quantum Solovay Randomness (q-SR)? If so, is it equivalent to q-MLR?
- We define such a notion and show it to be equivalent to q-MLR.

- Q (Nies and Scholz): Is there a notion of quantum Solovay Randomness (q-SR)? If so, is it equivalent to q-MLR?
- We define such a notion and show it to be equivalent to q-MLR.
- Q (Nies and Scholz): Is the set of q-MLR states closed under taking finite convex combinations?

- Q (Nies and Scholz): Is there a notion of quantum Solovay Randomness (q-SR)? If so, is it equivalent to q-MLR?
- We define such a notion and show it to be equivalent to q-MLR.
- Q (Nies and Scholz): Is the set of q-MLR states closed under taking finite convex combinations?

• Yes.

- Q (Nies and Scholz): Is there a notion of quantum Solovay Randomness (q-SR)? If so, is it equivalent to q-MLR?
- We define such a notion and show it to be equivalent to q-MLR.
- Q (Nies and Scholz): Is the set of q-MLR states closed under taking finite convex combinations?
- Yes.
- The proof uses the equivalence of q-SR and q-MLR.

A Quantum Solovay Test (q-ST)

is a uniformly computable sequence of q- Σ^0_1 sets, $(S^k)_{k\in\omega}$ such that

$$\sum_{k\in\omega}\tau(\mathcal{S}^k)<\infty$$

Tejas Bhojraj (UW-Madison)

Failing and Passing a (q-ST) at level δ

Let $0 < \delta < 1$. ρ fails the q-ST $(S^k)_{k \in \omega}$ at level δ if $\exists^{\infty} k$ such that $\rho(S^k) > \delta$. Otherwise, ρ passes $(S^k)_{k \in \omega}$ at level δ .

۲

Failing and Passing a (q-ST) at level δ

Let $0 < \delta < 1$. ρ fails the q-ST $(S^k)_{k \in \omega}$ at level δ if $\exists^{\infty} k$ such that $\rho(S^k) > \delta$. Otherwise, ρ passes $(S^k)_{k \in \omega}$ at level δ .

۲

Quantum Solovay Randomness (q-SR)

 ρ passes a q-ST $(S^k)_{k\in\omega}$ if for all δ , ρ passes $(S^k)_{k\in\omega}$ at level δ . ρ is q-SR if it passes all q-STs.

۲

For all states ρ , ρ is q-SR if and only if ρ is q-MLR.

< A

글 🕨 🛛 글

For all states ρ , ρ is q-SR if and only if ρ is q-MLR.

• (\Longrightarrow) A q-MLT is a q-ST □.

Image: Image:

3

For all states ρ , ρ is q-SR if and only if ρ is q-MLR.

•
$$(\Longrightarrow)$$
 A q-MLT is a q-ST \Box .

• (
$$\Leftarrow$$
) let $\rho = (\rho_n)_{n \in \omega}$ fail a q-ST $(S^k)_{k \in \omega}$ at level δ . Build a q-MLT $(G^m)_{m \in \omega}$, with $G^m = (G^m_n)_{n \in \omega}$, which ρ fails at level $\delta^2/72$.

< A

글 🕨 🛛 글

For all states ρ , ρ is q-SR if and only if ρ is q-MLR.

•
$$(\Longrightarrow)$$
 A q-MLT is a q-ST \square .

• (\Leftarrow) let $\rho = (\rho_n)_{n \in \omega}$ fail a q-ST $(S^k)_{k \in \omega}$ at level δ . Build a q-MLT $(G^m)_{m \in \omega}$, with $G^m = (G^m_n)_{n \in \omega}$, which ρ fails at level $\delta^2/72$.

• WLOG,
$$S_n^k = \emptyset$$
 for $n > k$.

For all states ρ , ρ is q-SR if and only if ρ is q-MLR.

•
$$(\Longrightarrow)$$
 A q-MLT is a q-ST \square .

• (\Leftarrow) let $\rho = (\rho_n)_{n \in \omega}$ fail a q-ST $(S^k)_{k \in \omega}$ at level δ . Build a q-MLT $(G^m)_{m \in \omega}$, with $G^m = (G^m_n)_{n \in \omega}$, which ρ fails at level $\delta^2/72$.

• WLOG,
$$S_n^k = \emptyset$$
 for $n > k$.

Notation:

$$A^m_t = \{ \psi \in \mathbb{C}^{2^t}_{alg} : ||\psi|| = 1, \sum_{k \leqslant t} \mathsf{Tr}(|\psi\rangle \langle \psi|S^k_t) > \frac{2^m \delta}{6} \},$$

for $t, m \in \omega$. We may skip the proof in the interests of time and go straight to the application.

A finite convex combination of q-MLR states is q-MLR: If $(\rho^i)_{i < k}$ are q-MLR and $\sum_{i < k} \alpha_i = 1$, then $\rho = \sum_{i < k} \alpha_i \rho^i$ is q-MLR.

A finite convex combination of q-MLR states is q-MLR: If $(\rho^i)_{i < k}$ are q-MLR and $\sum_{i < k} \alpha_i = 1$, then $\rho = \sum_{i < k} \alpha_i \rho^i$ is q-MLR.

• Towards a contradiction,

A finite convex combination of q-MLR states is q-MLR: If $(\rho^i)_{i < k}$ are q-MLR and $\sum_{i < k} \alpha_i = 1$, then $\rho = \sum_{i < k} \alpha_i \rho^i$ is q-MLR.

- Towards a contradiction,
- let there be a q-MLT, $(G^m)_{m\in\omega}$ and a $\delta > 0$ such that $\forall m \in \omega$, $\rho(G^m) > \delta$.

A finite convex combination of q-MLR states is q-MLR: If $(\rho^i)_{i < k}$ are q-MLR and $\sum_{i < k} \alpha_i = 1$, then $\rho = \sum_{i < k} \alpha_i \rho^i$ is q-MLR.

- Towards a contradiction,
- let there be a q-MLT, $(G^m)_{m\in\omega}$ and a $\delta > 0$ such that $\forall m \in \omega$, $\rho(G^m) > \delta$.
- So, $\forall m \in \omega$, $\exists n$ such that $\operatorname{Tr}(\rho_n G_n^m) > \delta$ where $\rho_n = \sum_{i < k} \alpha_i \rho_n^i$.

A finite convex combination of q-MLR states is q-MLR: If $(\rho^i)_{i < k}$ are q-MLR and $\sum_{i < k} \alpha_i = 1$, then $\rho = \sum_{i < k} \alpha_i \rho^i$ is q-MLR.

- Towards a contradiction,
- let there be a q-MLT, $(G^m)_{m\in\omega}$ and a $\delta > 0$ such that $\forall m \in \omega$, $\rho(G^m) > \delta$.
- So, $\forall m \in \omega$, $\exists n$ such that $\operatorname{Tr}(\rho_n G_n^m) > \delta$ where $\rho_n = \sum_{i < k} \alpha_i \rho_n^i$.
- I.e, $\forall m \in \omega$, $\exists n$ such that

$$\delta < \operatorname{Tr}(\sum_{i < k} \alpha_i \rho_n^i G_n^m) = \sum_{i < k} \alpha_i \operatorname{Tr}(\rho_n^i G_n^m).$$

A finite convex combination of q-MLR states is q-MLR: If $(\rho^i)_{i < k}$ are q-MLR and $\sum_{i < k} \alpha_i = 1$, then $\rho = \sum_{i < k} \alpha_i \rho^i$ is q-MLR.

- Towards a contradiction,
- let there be a q-MLT, $(G^m)_{m\in\omega}$ and a $\delta > 0$ such that $\forall m \in \omega$, $\rho(G^m) > \delta$.
- So, $\forall m \in \omega$, $\exists n$ such that $\operatorname{Tr}(\rho_n G_n^m) > \delta$ where $\rho_n = \sum_{i < k} \alpha_i \rho_n^i$.
- I.e, $\forall m \in \omega$, $\exists n$ such that

$$\delta < \operatorname{Tr}(\sum_{i < k} \alpha_i \rho_n^i G_n^m) = \sum_{i < k} \alpha_i \operatorname{Tr}(\rho_n^i G_n^m).$$

• By convexity there must be an *i* such that $Tr(G_n^m \rho_n^i) > \delta$

• So, $\forall m \exists n, i \text{ such that } \operatorname{Tr} (\rho_n^i G_n^m) > \delta$.

æ

- So, $\forall m \exists n, i \text{ such that } \operatorname{Tr} (\rho_n^i G_n^m) > \delta$.
- There are only finitely many *i* s.

э

- So, $\forall m \exists n, i \text{ such that } \operatorname{Tr} (\rho_n^i G_n^m) > \delta$.
- There are only finitely many *i* s.
- By pigeonhole, there is an *i* such that ∃[∞] *m* with Tr (ρⁱ_nG^m_n) > δ, for some *n*.

- So, $\forall m \exists n, i \text{ such that } \operatorname{Tr} (\rho_n^i G_n^m) > \delta$.
- There are only finitely many *i* s.
- By pigeonhole, there is an *i* such that ∃[∞] *m* with Tr (ρⁱ_nG^m_n) > δ, for some *n*.
- So, $\exists^{\infty} m$ with $\rho^i(G^m) > \delta$.

- So, $\forall m \exists n, i \text{ such that } \operatorname{Tr} (\rho_n^i G_n^m) > \delta$.
- There are only finitely many *i* s.
- By pigeonhole, there is an *i* such that ∃[∞] *m* with Tr (ρⁱ_nG^m_n) > δ, for some *n*.
- So, $\exists^{\infty} m$ with $\rho^i(G^m) > \delta$.
- So, ρ^i fails the q-Solovay test $(G^m)_{m\in\omega}$ and hence is not q-MLR by our previous result.

Thank You

イロト イヨト イヨト イヨト

3

Table of Contents

Quantum Mechanics

- The Density Matrix
- Partial Trace

Quantum Cantor Space

- Coherent Sequences of Density Matrices
- Quantum Σ⁰₁-Classes

3 Randomness

- Quantum Martin-Löf Randomness
- Computable states can be random

Definitions

- Quantum Solovay Randomness is equivalent to q-MLR
- 6 The set of q-MLR states is convex
 - Construction
 - Verification
• Build $G^m = (G_n^m)_n$: Procedure to build G_n^m .

æ

- Build $G^m = (G_n^m)_n$: Procedure to build G_n^m .
- Say we are given C_{n-1}^m , a maximal (under set inclusion) orthonormal subset of A_{n-1}^m , and $G_{n-1}^m = \{|\psi\rangle\langle\psi| : \psi \in C_{n-1}^m\}$. Let

$$D_n^m = \{ |\psi\rangle \otimes |i\rangle : i \in \{1,0\}, \psi \in C_{n-1}^m \}.$$

Easy to see that $D_n^m \subseteq A_n^m$ since $C_{n-1}^m \subseteq A_{n-1}^m$.

- Build $G^m = (G_n^m)_n$: Procedure to build G_n^m .
- Say we are given C_{n-1}^m , a maximal (under set inclusion) orthonormal subset of A_{n-1}^m , and $G_{n-1}^m = \{|\psi\rangle\langle\psi| : \psi \in C_{n-1}^m\}$. Let

$$D_n^m = \{ |\psi\rangle \otimes |i\rangle : i \in \{1,0\}, \psi \in C_{n-1}^m \}.$$

Easy to see that $D_n^m \subseteq A_n^m$ since $C_{n-1}^m \subseteq A_{n-1}^m$.

• Let C_n^m be S where S is a maximal orthonormal set such that $D_n^m \subseteq S \subseteq A_n^m$. Let $G_n^m = \{|\psi\rangle \langle \psi| : \psi \in C_n^m\}$. End

For each m, $G^m = (G_n^m)_{n \in \omega}$ is a quantum- Σ_1^0 set.

3

For each m, $G^m = (G_n^m)_{n \in \omega}$ is a quantum- Σ_1^0 set.

• Given C_{n-1}^m , we built C_n^m in stages t. $C_{n,0}^m = D_n^m$. To compute $C_{n,s}^m$ given $C_{n,s-1}^m$, check if:

$$\exists \tau \in A_n^m$$
 such that $\forall \psi \in C_{n,s-1}^m, \langle \tau | \psi \rangle = 0.$

This check is decidable as $Th(\mathbb{C}_{alg})$ is.

For each m, $G^m = (G_n^m)_{n \in \omega}$ is a quantum- Σ_1^0 set.

• Given C_{n-1}^m , we built C_n^m in stages t. $C_{n,0}^m = D_n^m$. To compute $C_{n,s}^m$ given $C_{n,s-1}^m$, check if:

$$\exists \tau \in A_n^m$$
 such that $\forall \psi \in C_{n,s-1}^m, \langle \tau | \psi \rangle = 0.$

This check is decidable as $Th(\mathbb{C}_{alg})$ is.

• If yes, find a witness τ and set $C_{n,s}^m = \{\tau\} \cup C_{n,s-1}^m$. If no, set $C_n^m = C_{n,s-1}^m$ and stop. By finite dimensionality, at some stage we must stop.

For each m, $G^m = (G_n^m)_{n \in \omega}$ is a quantum- Σ_1^0 set.

• Given C_{n-1}^m , we built C_n^m in stages t. $C_{n,0}^m = D_n^m$. To compute $C_{n,s}^m$ given $C_{n,s-1}^m$, check if:

$$\exists \tau \in A_n^m \text{ such that } \forall \psi \in C_{n,s-1}^m, \left\langle \tau | \psi \right\rangle = 0.$$

This check is decidable as $Th(\mathbb{C}_{alg})$ is.

- If yes, find a witness τ and set $C_{n,s}^m = {\tau} \cup C_{n,s-1}^m$. If no, set $C_n^m = C_{n,s-1}^m$ and stop. By finite dimensionality, at some stage we must stop.
- So, $(G_n^m)_{n \in \omega}$ is a uniformly computable sequence.

For each m, $G^m = (G_n^m)_{n \in \omega}$ is a quantum- Σ_1^0 set.

• Given C_{n-1}^m , we built C_n^m in stages t. $C_{n,0}^m = D_n^m$. To compute $C_{n,s}^m$ given $C_{n,s-1}^m$, check if:

$$\exists \tau \in A_n^m \text{ such that } \forall \psi \in C_{n,s-1}^m, \left\langle \tau | \psi \right\rangle = 0.$$

This check is decidable as $Th(\mathbb{C}_{alg})$ is.

- If yes, find a witness τ and set $C_{n,s}^m = {\tau} \cup C_{n,s-1}^m$. If no, set $C_n^m = C_{n,s-1}^m$ and stop. By finite dimensionality, at some stage we must stop.
- So, $(G_n^m)_{n \in \omega}$ is a uniformly computable sequence.
- By construction, $range(G_{n-1}^m \otimes I_2) \subset range(G_n^m)$.

 $(G^m)_{m\in\omega}$ is a q-MLT.

∃ 990

イロン 不聞と 不同と 不同と

۲

 $(G^m)_{m\in\omega}$ is a q-MLT.

 $1 \ge \sum_{k} \tau(S^{k}) \ge \sum_{k} 2^{-n} \mathrm{Tr}(S_{n}^{k}),$

by definition

< □ > < □ > < □ > < □ > < □ > < □ >

3

 $(G^m)_{m\in\omega}$ is a q-MLT.

$$1 \ge \sum_{k} \tau(S^{k}) \ge \sum_{k} 2^{-n} \operatorname{Tr}(S_{n}^{k}),$$

by definition

• For fixed *m*, *n* we have that,

$$2^{n} \ge \sum_{k} \operatorname{Tr}(S_{n}^{k})$$

$$\ge \sum_{k} \operatorname{Tr}(\sum_{\psi \in C_{n}^{m}} |\psi\rangle \langle \psi|S_{n}^{k})$$

$$= \sum_{\psi \in C_{n}^{m}} \sum_{k} \operatorname{Tr}(|\psi\rangle \langle \psi|S_{n}^{k})$$

$$\ge |C_{n}^{m}| \frac{2^{m}\delta}{6}$$

$$= \operatorname{Tr}(G_{n}^{m}) \frac{2^{m}\delta}{6}. \square$$

< ≣ >

æ

 ρ fails $(G^m)_m$ at level $\delta^2/72$. Or, for all $m \in \omega$, there is an *n* such that

$$\operatorname{Tr}(\rho_n G_n^m) \geqslant \frac{\delta^2}{72}.$$

э

 ρ fails $(G^m)_m$ at level $\delta^2/72$. Or, for all $m \in \omega$, there is an n such that $\operatorname{Tr}(\rho_n G_n^m) \ge \frac{\delta^2}{72}.$

• Let *m* be arbitrary.

э

 ρ fails $(G^m)_m$ at level $\delta^2/72$. Or, for all $m \in \omega$, there is an n such that $\operatorname{Tr}(\rho_n G_n^m) \ge \frac{\delta^2}{72}.$

- Let *m* be arbitrary.
- Fix a *n* so that there exist 2^m many *ks* less than *n* such that $Tr(\rho_n S_n^k) > \delta$.

 ρ fails $(G^m)_m$ at level $\delta^2/72$. Or, for all $m \in \omega$, there is an n such that $\operatorname{Tr}(\rho_n G_n^m) \ge \frac{\delta^2}{72}.$

- Let *m* be arbitrary.
- Fix a *n* so that there exist 2^m many *ks* less than *n* such that $Tr(\rho_n S_n^k) > \delta$.
- Case 1: ρ_n is algebraic:

$$\rho_n = \sum_{i \leqslant 2^n} \alpha_i |\psi^i \rangle \langle \psi^i |$$

 $\sum_{i\leqslant 2^n}\alpha_i=1 \text{ and for each } i, \ |\psi^i\rangle\in \mathbb{C}^{2^n}_{alg} \text{ and } ||\psi^i||\leqslant 1.$

Tejas Bhojraj (UW-Madison)

Quantum Solovay randomness

Waterloo, June 2018

イロト イヨト イヨト イヨト

• Fix $i \leq 2^n$; let $\psi = \psi^i$. Write

$$\psi = c_o \psi_o + c_p \psi_p$$

where $\psi_o \in \operatorname{range}(G_n^m)$ and $\psi_p \in \operatorname{range}(G_n^m)^{\perp}$ are unit vectors, $c_o, c_p \in \mathbb{C}$ and $|c_0|^2 + |c_p|^2 = ||\psi||^2 \leq 1$.

• Fix $i \leq 2^n$; let $\psi = \psi^i$. Write

$$\psi = c_o \psi_o + c_p \psi_p$$

where $\psi_o \in \operatorname{range}(G_n^m)$ and $\psi_p \in \operatorname{range}(G_n^m)^{\perp}$ are unit vectors, $c_o, c_p \in \mathbb{C}$ and $|c_0|^2 + |c_p|^2 = ||\psi||^2 \leq 1$.

• For a k, let $S_n^k = S$. An easy, but long, calculation shows:

 $Tr(S|\psi\rangle\langle\psi|) \leq$

 $|c_{o}|^{2} \langle S\psi_{o}|S\psi_{o}\rangle + |c_{p}|^{2} \langle S\psi_{p}|S\psi_{p}\rangle + 2|c_{o}||c_{p}|| \langle S\psi_{p}|S\psi_{o}\rangle|$

Tejas Bhojraj (UW-Madison)

Quantum Solovay randomness

Waterloo, June 2018

イロト イヨト イヨト イヨト

• By Cauchy-Schwarz:

$$\begin{split} |\langle S\psi_{p}|S\psi_{o}\rangle| &\leq ||S\psi_{o}||||S\psi_{p}|| \\ &\leq (\max\{||S\psi_{o}||,||S\psi_{p}||\})^{2} \\ &\leq ||S\psi_{o}||^{2} + ||S\psi_{p}||^{2}. \end{split}$$

∃ →

Image: A matrix

3

• By Cauchy-Schwarz:

$$\begin{split} |\langle S\psi_p | S\psi_o \rangle| &\leq ||S\psi_o||| |S\psi_p|| \\ &\leq (\max\{||S\psi_o||, ||S\psi_p||\})^2 \\ &\leq ||S\psi_o||^2 + ||S\psi_p||^2. \end{split}$$

• Using this and that $|c_o|,|c_p|\leqslant 1,$ ${\rm Tr}(S|\psi\rangle\langle\psi|)$

$$\leq |c_o|^2 \langle S\psi_o | S\psi_o \rangle + |c_p|^2 \langle S\psi_p | S\psi_p \rangle + 2|c_o||c_p|(||S\psi_o||^2 + ||S\psi_p||^2)$$

$$\leq |c_o| \langle S\psi_o | S\psi_o \rangle + |c_p| \langle S\psi_p | S\psi_p \rangle + 2|c_o|||S\psi_o||^2 + 2|c_p|||S\psi_p||^2$$

$$= 3(|c_o| \langle S\psi_o | S\psi_o \rangle + |c_p| \langle S\psi_p | S\psi_p \rangle)$$

э

By the choice of *n*, pick $M \subseteq \{1, 2...n\}$ such that $|M| = 2^m$ and $\operatorname{Tr}(\rho_n S_n^k) > \delta$ for each *k* in *M*.

$$\begin{split} 2^{m}\delta &< \sum_{k\in M} \operatorname{Tr}(\rho_{n}S_{n}^{k}) \\ &= \sum_{k\in M} \operatorname{Tr}(\sum_{i\leqslant 2^{n}} \alpha_{i}|\psi^{i}\rangle\langle\psi^{i}|S_{n}^{k}) \\ &= \sum_{k\in M} \sum_{i\leqslant 2^{n}} \alpha_{i}\operatorname{Tr}(|\psi^{i}\rangle\langle\psi^{i}|S_{n}^{k}) \\ &= \sum_{i\leqslant 2^{n}} \alpha_{i} \sum_{k\in M} \operatorname{Tr}(|\psi^{i}\rangle\langle\psi^{i}|S_{n}^{k}) \\ &\leqslant \sum_{i\leqslant 2^{n}} \alpha_{i} \sum_{k\in M} 3(|c_{o}^{i}|\langle S_{n}^{k}\psi_{o}^{i}|S_{n}^{k}\psi_{o}^{i}\rangle + |c_{p}^{i}|\langle S_{n}^{k}\psi_{p}^{i}|S_{n}^{k}\psi_{p}^{i}\rangle). \end{split}$$

Tejas Bhojraj (UW-Madison)

 So,

$$\begin{split} \frac{2^m \delta}{3} &< \sum_{i \leqslant 2^n} \alpha_i \sum_{k \in M} (|c_o^i| \left\langle S_n^k \psi_o^i | S_n^k \psi_o^i \right\rangle + |c_p^i| \left\langle S_n^k \psi_p^i | S_n^k \psi_p^i \right\rangle) \\ &= \sum_{i \leqslant 2^n} \alpha_i |c_o^i| \sum_{k \in M} \left\langle S_n^k \psi_o^i | S_n^k \psi_o^i \right\rangle + \sum_{i \leqslant 2^n} \alpha_i |c_p^i| \sum_{k \in M} \left\langle S_n^k \psi_p^i | S_n^k \psi_p^i \right\rangle \end{split}$$

■ わへで

・ロト ・聞き ・ モト ・ モト

So,

$$\begin{split} \frac{2^m \delta}{3} &< \sum_{i \leqslant 2^n} \alpha_i \sum_{k \in M} (|c_o^i| \left\langle S_n^k \psi_o^i | S_n^k \psi_o^i \right\rangle + |c_p^i| \left\langle S_n^k \psi_p^i | S_n^k \psi_p^i \right\rangle) \\ &= \sum_{i \leqslant 2^n} \alpha_i |c_o^i| \sum_{k \in M} \left\langle S_n^k \psi_o^i | S_n^k \psi_o^i \right\rangle + \sum_{i \leqslant 2^n} \alpha_i |c_p^i| \sum_{k \in M} \left\langle S_n^k \psi_p^i | S_n^k \psi_p^i \right\rangle \end{split}$$

• We now bound the second sum on the right-hand side.

æ

So,

$$\begin{split} \frac{2^m \delta}{3} &< \sum_{i \leqslant 2^n} \alpha_i \sum_{k \in M} (|c_o^i| \left\langle S_n^k \psi_o^i | S_n^k \psi_o^i \right\rangle + |c_p^i| \left\langle S_n^k \psi_p^i | S_n^k \psi_p^i \right\rangle) \\ &= \sum_{i \leqslant 2^n} \alpha_i |c_o^i| \sum_{k \in M} \left\langle S_n^k \psi_o^i | S_n^k \psi_o^i \right\rangle + \sum_{i \leqslant 2^n} \alpha_i |c_p^i| \sum_{k \in M} \left\langle S_n^k \psi_p^i | S_n^k \psi_p^i \right\rangle \end{split}$$

- We now bound the second sum on the right-hand side.
- Make a key use of the maximality of the orthonormal subset chosen during the construction.

Tejas Bhojraj (UW-Madison)

Quantum Solovay randomness

Waterloo, June 2018

∃ 990

イロト イヨト イヨト イヨト

• $\forall i, \psi_p^i \in \operatorname{range}(G_n^m)^{\perp} \cap \mathbb{C}^{2^n}_{alg}$.

글 🕨 🛛 글

- $\forall i, \psi_p^i \in \operatorname{range}(G_n^m)^{\perp} \cap \mathbb{C}^{2^n}_{alg}$.
- Hence, ψ_p^i is perpendicular to each element of C_n^m .

- $\forall i, \psi_p^i \in \operatorname{range}(G_n^m)^{\perp} \cap \mathbb{C}^{2^n}_{alg}$.
- Hence, ψ_p^i is perpendicular to each element of C_n^m .
- If $\psi_p^i \in A_n^m$, then $\{\psi_p^i\} \cup C_n^m$ is a orthonormal subset of A_n^m strictly containing C_n^m , contradicting the maximality of C_n^m .

- $\forall i, \psi_p^i \in \operatorname{range}(G_n^m)^{\perp} \cap \mathbb{C}^{2^n}_{alg}$.
- Hence, ψ_p^i is perpendicular to each element of C_n^m .
- If $\psi_p^i \in A_n^m$, then $\{\psi_p^i\} \cup C_n^m$ is a orthonormal subset of A_n^m strictly containing C_n^m , contradicting the maximality of C_n^m .
- So, $\psi_p^i \notin A_n^m$ for each *i*.

- $\forall i, \psi_p^i \in \operatorname{range}(G_n^m)^{\perp} \cap \mathbb{C}^{2^n}_{alg}$.
- Hence, ψ_p^i is perpendicular to each element of C_n^m .
- If $\psi_p^i \in A_n^m$, then $\{\psi_p^i\} \cup C_n^m$ is a orthonormal subset of A_n^m strictly containing C_n^m , contradicting the maximality of C_n^m .
- So, $\psi_p^i \notin A_n^m$ for each *i*.
- But, $\psi_p^i \in \mathbb{C}^{2^n}_{alg}$ and $||\psi_p^i|| = 1$. So the only way $\psi_p^i \notin A_n^m$ is if

- $\forall i, \psi_p^i \in \operatorname{range}(G_n^m)^{\perp} \cap \mathbb{C}^{2^n}_{alg}$.
- Hence, ψ_p^i is perpendicular to each element of C_n^m .
- If $\psi_p^i \in A_n^m$, then $\{\psi_p^i\} \cup C_n^m$ is a orthonormal subset of A_n^m strictly containing C_n^m , contradicting the maximality of C_n^m .
- So, $\psi_p^i \notin A_n^m$ for each *i*.
- But, $\psi_p^i \in \mathbb{C}^{2^n}_{alg}$ and $||\psi_p^i|| = 1$. So the only way $\psi_p^i \notin A_n^m$ is if

$$\sum_{k\leqslant n} \mathrm{Tr}(|\psi_p^i\rangle \big\langle \psi_p^i|S_n^k) \leqslant \frac{2^m\delta}{6}.$$

۵

We are trying to bound from above the second term on the right hand side of

$$\frac{2^m\delta}{3} < \sum_{i \leq 2^n} \alpha_i |c_o^i| \sum_{k \in M} \left\langle S_n^k \psi_o^i | S_n^k \psi_o^i \right\rangle + \sum_{i \leq 2^n} \alpha_i |c_p^i| \sum_{k \in M} \left\langle S_n^k \psi_p^i | S_n^k \psi_p^i \right\rangle$$

æ

Tejas Bhojraj (UW-Madison)

Quantum Solovay randomness

Waterloo, June 2018

イロト イヨト イヨト イヨト

• So, bound the sum as follows:

$$\sum_{i \leq 2^{n}} \alpha_{i} |c_{p}^{i}| \sum_{k \in M} \left\langle S_{n}^{k} \psi_{p}^{i} | S_{n}^{k} \psi_{p}^{i} \right\rangle$$
$$\leq \sum_{i \leq 2^{n}} \alpha_{i} |c_{p}^{i}| \frac{2^{m} \delta}{6} < \sum_{i \leq 2^{n}} \alpha_{i} \frac{2^{m} \delta}{6} \leq \frac{2^{m} \delta}{6}$$

æ

• So, bound the sum as follows:

 $i \leq 2^n$

$$\sum_{i \leq 2^{n}} \alpha_{i} |c_{p}^{i}| \sum_{k \in M} \left\langle S_{n}^{k} \psi_{p}^{i} | S_{n}^{k} \psi_{p}^{i} \right\rangle$$
$$\leq \sum_{i \leq 2^{n}} \alpha_{i} |c_{p}^{i}| \frac{2^{m} \delta}{6} < \sum_{i \leq 2^{n}} \alpha_{i} \frac{2^{m} \delta}{6} \leq \frac{2^{m} \delta}{6}$$
$$\sum_{i \leq 2^{n}} \alpha_{i} |c_{o}^{i}| \sum_{k \in M} \left\langle S_{n}^{k} \psi_{o}^{i} | S_{n}^{k} \psi_{o}^{i} \right\rangle > \frac{2^{m} \delta}{6}$$

Tejas Bhojraj (UW-Madison)

• This means:

Waterloo, June 2018

39 / 41

æ
•
$$|\langle S_n^k \psi_o^i | S_n^k \psi_o^i
angle | \leqslant 1$$
 and $|M| = 2^m$

Tejas Bhojraj (UW-Madison)

Quantum Solovay randomness

Waterloo, June 2018 40 / 41

■ わへで

イロト イヨト イヨト イヨト

• $|\langle S_n^k \psi_o^i | S_n^k \psi_o^i \rangle| \leqslant 1$ and $|M| = 2^m$

• So, cancel the 2^m s to get:

$$\frac{\delta}{6} < \sum_{i \leqslant 2^n} \alpha_i |c_o^i|.$$

-

3

40 / 41

• $|\langle S_n^k \psi_o^i | S_n^k \psi_o^i \rangle| \leq 1$ and $|M| = 2^m$

• So, cancel the 2^m s to get:

$$\frac{\delta}{6} < \sum_{i \leqslant 2^n} \alpha_i |c_o^i|.$$

• As $\sum_{i \leq 2^n} \alpha_i = 1$, by Jensen's inequality:

$$\frac{\delta^2}{36} < \big(\sum_{i \leqslant 2^n} \alpha_i |c_o^i|\big)^2 \leqslant \sum_{i \leqslant 2^n} \alpha_i |c_o^i|^2$$

э

• $|\langle S_n^k \psi_o^i | S_n^k \psi_o^i \rangle| \leq 1$ and $|M| = 2^m$

• So, cancel the 2^m s to get:

$$\frac{\delta}{6} < \sum_{i \leqslant 2^n} \alpha_i |c_o^i|.$$

• As $\sum_{i \leq 2^n} \alpha_i = 1$, by Jensen's inequality:

$$\frac{\delta^2}{36} < \big(\sum_{i \leqslant 2^n} \alpha_i | \boldsymbol{c}_{\boldsymbol{o}}^i | \big)^2 \leqslant \sum_{i \leqslant 2^n} \alpha_i | \boldsymbol{c}_{\boldsymbol{o}}^i |^2$$

• Finally, it is easy to see that

$$Tr(\rho_n G_n^m) = \sum_{i \leq 2^n} \alpha_i Tr(|c_o^i \psi_o^i \rangle \langle c_o^i \psi_o^i |)$$
$$= \sum_{i \leq 2^n} \alpha_i |c_o^i|^2 > \frac{\delta^2}{36}$$

Tejas Bhojraj (UW-Madison)

40 / 41

• Case 2: ρ_n is not expressible as a convex sum of algebraic projections. • Since $\{\psi \in \mathbb{C}^{2^n}_{alg} : ||\psi|| \leq 1\}$ is dense in the closed unit ball in \mathbb{C}^{2^n} , using case 1, we see that $Tr(\rho_n G_n^m) > \frac{\delta^2}{72}$

41 / 41