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Reference: ‘Martin-Löf random quantum states’, by Nies and Scholz. I will
first discuss this paper and then outline some answers to the questions
posed in it.
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All the quantum physics needed for this talk

....in one slide.

First, a sketch. We will formalize it soon.
A quantum mechanical system is a superposition of ‘classical’ states.
It’s dimension is the number of classical states it is a superposition of.
A measurement of the system collapses it into one of the classical
states. Measuring a classical state does not cause any collapse. Hence
they are called ‘classical’.
Let us formalize this.
We represent a n-dimensional system by a matrix ψψ˚ where ψ P Cn

is a unit column vector (ψ˚ is the complex conjugate transpose of ψ).
Fix a orthonormal basis b1, .., bn of Cn. The bib

˚
i s will be the

classical states.
A measurement is represented by a matrix H with eigenvectors
b1, .., bn with eigenvalues equalling 0 or 1. So, H is a Hermitian
projection.
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Okay, I tried but I need two.

Measuring H on ψψ˚ causes the system to collapse to one of the
classical states bib˚i and the outcome of the measurement is ei where
Hbi “ eibi (i.e, the eigenvalue corresponding to bi .)
The probability of collapsing ψψ˚ to bib

˚
i on measurement is

|
〈
ψ, bi

〉
|2.

By orthonormality, we see that measurements do not collapse classical
states.
One can check that the expected value of measuring H on ψψ˚ is
Trace(Hψψ˚).
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Qubits

A qubit is a 2-dimensional system.

Bra-Ket notation: denote a column vector v by |v
〉
and v˚ by

〈
v |.

Let H be a Hermitian operator on C2 with eigenpairs pV1, 1q and
pV0, 0q with V1 and V0 forming a orthonormal basis.
Denote V0,V1 by |0

〉
and |1

〉
.

So, pC2qbn :“ Hn has a orthonormal basis comprised of elements of
the form: Fix a σ P 2n. The basis vector given by this σ is

|σp0q
〉
b |σp1q

〉
b ...b |σpn ´ 1q

〉
“

â

iăn

|σpiq
〉

:“ |σ
〉

If |ψ
〉
P Hn is a unit vector, the matrix |ψ

〉〈
ψ| is said to be a pure

state.
A mixed state is a convex combination of 2 or more pure states.
A pure state is a single quantum system while a mixed state is a
probabilistic mixture of pure states.
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The Density Matrix

The mixed and pure states are called density matrices.

In fact, any Hermitian, positive semidefinite matrix with trace = 1
gives a state and is a density matrix.
If a Hermitian ρ on Hn has Trace(ρ)=1, then it has a complete
orthonormal set of eigenvectors pψi qiă2n . If the eigenpairs are pαi , ψi q,
then

ρ “
ÿ

iă2n
αi |ψi

〉〈
ψi | (1)

The sum is convex as 1=Tr(ρ)=
ř

i αi . So, ρ gives a state.
The density matrix ρ “

ř

iă2n αi |ψi

〉〈
ψi | gives a system which is in

|ψi

〉〈
ψi | with probability αi

Notation: LpHnq denotes the space of 2n by 2n matrices.
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So far we have seen: a system of n qubits is modeled by a density
matrix in LpHnq.

A system in Hn`1 “ Hn b H1 which is a composite of systems
σ P LpHnq and τ P LpH1q is described by ρ “ σ b τ P LpHnq b LpH1q.
So, a composite system is a product state (pure tensor).
The pure tensors do not exhaust the set of density matrices in
LpHn`1q.
Take a ρ P LpHn`1q which is not a pure tensor.
It is not a composite of states in LpHnq and LpH1q.
Such a ρ is called entangled.
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Partial Trace

Given ρ P Ln`1 we want to find the state given by ignoring the last
qubit.
What does ‘ignoring’ mean?
It means we need a τ P Ln which describes measurements of the first
n qubits of ρ.
I.e, we need a τ such that for any hermitian O P Ln,

TrpτOq “ TrpρpO b I qq.

(Recall: The expectation of measuring O on φ is TrpφOq.)
If ρ “ λb σ for a λ P Ln and σ P L1 then,

TrpρpO b I qq “ TrpλO b σI q “ TrpλOqTrpσq “ TrpλOq

So, τ “ λ works.
If ρ is entangled, the choice of τ is not so obvious
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Denote LpHnq by Ln. Define

T1 : Ln`1 ÝÑ Ln

by T1pAb Bq :“ A ˚TrpBq for any A P Ln,B P L1 and then extending
it linearly.

This defines T1 since if ρ P Ln`1, it is a finite sum of the form

ρ “
ÿ

i

αi pAi b Bi q

for scalars αi , Ai P Ln and Bi P L1.(After modding out by the usual ”)
It turns out that T1pρq is the required τ
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There is a arrangement of the bases of Hn which makes computing the
partial trace easy.

Details (skip)
Recall that Hn has a orthonormal basis comprised of elements of the
form

â

iăn

|σpiq
〉

:“ |σ
〉
for a σ P 2n

Order them as follows: given σ ă τ , define
1 σ0 ă σ1
2 σ1 ą τ0
3 σi ă τ i for i “ 0, 1

For A P LpHnq,B P LpH1q,

Ab B “

„

Ab00 Ab01
Ab10 Ab11



if B “
„

b00 b01
b10 b11



Tejas Bhojraj (UW-Madison) Quantum Solovay randomness Waterloo, June 2018 10 / 41



There is a arrangement of the bases of Hn which makes computing the
partial trace easy.
Details (skip)
Recall that Hn has a orthonormal basis comprised of elements of the
form

â

iăn

|σpiq
〉

:“ |σ
〉
for a σ P 2n

Order them as follows: given σ ă τ , define
1 σ0 ă σ1
2 σ1 ą τ0
3 σi ă τ i for i “ 0, 1

For A P LpHnq,B P LpH1q,

Ab B “

„

Ab00 Ab01
Ab10 Ab11



if B “
„

b00 b01
b10 b11



Tejas Bhojraj (UW-Madison) Quantum Solovay randomness Waterloo, June 2018 10 / 41



Finding the Partial Trace of an Operator from it’s Matrix

Let ρ P Ln`1

ρ “

„

A B
C D



be with each block in Ln

By the arrangement of the basis elements, we see that

T1pρq “ A` D
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The Partial Trace of an Entangled State is Mixed

Let ψ “ p|1
〉
b |1

〉
` |0

〉
b |0

〉
q{
?
2 “ p|11

〉
` |00

〉
q{
?
2

The pure state representing it is

|ψ
〉〈
ψ| “ p|00

〉〈
00| ` |00

〉〈
11| ` |11

〉〈
00| ` |11

〉〈
11|q{2

It’s matrix is
»

—

—

–

1{2 0 0 1{2
0 0 0 0
0 0 0 0
1{2 0 0 1{2

fi

ffi

ffi

fl

and partial trace is

T1pρq “

„

1{2 0
0 1{2



which has rank = 2 and so is not a pure state. (Pure states have rank
1)
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Now we consider a system of countably infinitely many qubits.

For each n, let Tn : Ln ÝÑ Ln´1 be the partial trace.
A sequence of density matrices, pSnqnPω with Sn P Ln is coherent if
TnpSnq “ Sn´1 for all n.
It models a sequence of infinitely many qubits where for all n, the first
n qubits are obtained by ignoring the last qubit from the first n ` 1
qubits.
The set of such coherent sequences is called quantum Cantor space.
A coherent sequence will also be called a state.

Tejas Bhojraj (UW-Madison) Quantum Solovay randomness Waterloo, June 2018 14 / 41



Now we consider a system of countably infinitely many qubits.
For each n, let Tn : Ln ÝÑ Ln´1 be the partial trace.

A sequence of density matrices, pSnqnPω with Sn P Ln is coherent if
TnpSnq “ Sn´1 for all n.
It models a sequence of infinitely many qubits where for all n, the first
n qubits are obtained by ignoring the last qubit from the first n ` 1
qubits.
The set of such coherent sequences is called quantum Cantor space.
A coherent sequence will also be called a state.

Tejas Bhojraj (UW-Madison) Quantum Solovay randomness Waterloo, June 2018 14 / 41



Now we consider a system of countably infinitely many qubits.
For each n, let Tn : Ln ÝÑ Ln´1 be the partial trace.
A sequence of density matrices, pSnqnPω with Sn P Ln is coherent if
TnpSnq “ Sn´1 for all n.

It models a sequence of infinitely many qubits where for all n, the first
n qubits are obtained by ignoring the last qubit from the first n ` 1
qubits.
The set of such coherent sequences is called quantum Cantor space.
A coherent sequence will also be called a state.

Tejas Bhojraj (UW-Madison) Quantum Solovay randomness Waterloo, June 2018 14 / 41



Now we consider a system of countably infinitely many qubits.
For each n, let Tn : Ln ÝÑ Ln´1 be the partial trace.
A sequence of density matrices, pSnqnPω with Sn P Ln is coherent if
TnpSnq “ Sn´1 for all n.
It models a sequence of infinitely many qubits where for all n, the first
n qubits are obtained by ignoring the last qubit from the first n ` 1
qubits.

The set of such coherent sequences is called quantum Cantor space.
A coherent sequence will also be called a state.

Tejas Bhojraj (UW-Madison) Quantum Solovay randomness Waterloo, June 2018 14 / 41



Now we consider a system of countably infinitely many qubits.
For each n, let Tn : Ln ÝÑ Ln´1 be the partial trace.
A sequence of density matrices, pSnqnPω with Sn P Ln is coherent if
TnpSnq “ Sn´1 for all n.
It models a sequence of infinitely many qubits where for all n, the first
n qubits are obtained by ignoring the last qubit from the first n ` 1
qubits.
The set of such coherent sequences is called quantum Cantor space.

A coherent sequence will also be called a state.

Tejas Bhojraj (UW-Madison) Quantum Solovay randomness Waterloo, June 2018 14 / 41



Now we consider a system of countably infinitely many qubits.
For each n, let Tn : Ln ÝÑ Ln´1 be the partial trace.
A sequence of density matrices, pSnqnPω with Sn P Ln is coherent if
TnpSnq “ Sn´1 for all n.
It models a sequence of infinitely many qubits where for all n, the first
n qubits are obtained by ignoring the last qubit from the first n ` 1
qubits.
The set of such coherent sequences is called quantum Cantor space.
A coherent sequence will also be called a state.

Tejas Bhojraj (UW-Madison) Quantum Solovay randomness Waterloo, June 2018 14 / 41



Quantum Σ0
1 Classes

A Σ0
1 class S Ď 2ω can be written as

S “
ď

n

JAnK

where
1 An Ď 2n
2 An index for An as a computable set can be obtained uniformly in n.
3 JAnK Ď JAn`1K

Extend this to the quantum setting.
A Hermitian projection P P Ln is said to be special if it’s entries are in
Calg (roots of Q polynomials); hence computable.
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Definition: q-Σ0
1 class

S “ pPnqn a sequence of special projections is a q-Σ0
1 class if

1 Pn P Ln

2 An index for Pn as a computable matrix can be obtained uniformly in n.

3 rng(Pnq ĎrngpPn`1q.

Let ρ “ pρnqn be a state.
Each Pn P Ln is a measurement of the first n qubits.
So, S is a sequence of measurements on longer and longer initial
segments of a state, ρ.

Definition
ρpSq :“ limnTrpρnPnq “ supnTrpρnPnq
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Take the classical Σ0
1 class S as before.

S “
ď

n

JAnK

The measure of S is limnp2´n|An|q.

Analogously, we define the ‘measure’ of G “ pPnqn, a q-Σ0
1 to be

limn2´nrank(Pnq.
If we define the state τ :“ p2´nI2nqn, then τpG q “ limn2´nrank(Pnq.
With this notion of measure, we can finally define randomness...
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Quantum Martin-Löf Randomness

Definition: quantum-Martin-Löf test (q-MLT)

A uniformly computable sequence pGmqm of q ´ Σ1
0 classes is a (q-MLT) if

τpGmq ď 2´m for each m.

Definition: Passing and Failing a q-MLT at order δ
A state ρ fails a q-MLT G “ pGmqm at order δ if ρpGmq ą δ for each m. ρ
passes G at order δ if it does not fail G at order δ. I.e, Dm, ρpGmq ď δ.

Definition: Passing a q-MLT
ρ passes a q-MLT G “ pGmqm if it passes G at order δ for all δ ą 0.
I.e, infmρpGmq “ 0. ρ is quantum-Martin-Löf Random (q-MLR) if it passes
each q-MLT.
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Computable states can be random

The state τ “ p2´nI2nqn is computable.

By definition of a q-MLT, τ is q-MLR.
Work in progress: Characterize computable q-MLR states.
If ρn P Ln is a density matrix, its eigenvalues pαi qiď2n form a
probability distribution. Denote the entropy of this distribution by
Hpρnq.
Each element of τ is uniform and so has maximum entropy.
Entropy may provide a characterization?
Partial progress: If ρ “ pρnqn is computable, then

Dc@nrHpρnq ą n ´ cs ñ ρ is q-MLRñ liminfnrHpρnq{ns “ 1.

.
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Questions

Q (Nies and Scholz): Is there a notion of quantum Solovay
Randomness (q-SR)? If so, is it equivalent to q-MLR?

We define such a notion and show it to be equivalent to q-MLR.
Q (Nies and Scholz): Is the set of q-MLR states closed under taking
finite convex combinations?
Yes.
The proof uses the equivalence of q-SR and q-MLR.
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Definitions

A Quantum Solovay Test (q-ST)

is a uniformly computable sequence of q-Σ0
1 sets, pSkqkPω such that

ÿ

kPω

τpSkq ă 8
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Failing and Passing a (q-ST) at level δ

Let 0 ă δ ă 1. ρ fails the q-ST pSkqkPω at level δ if D8k such that
ρpSkq ą δ. Otherwise, ρ passes pSkqkPω at level δ.

Quantum Solovay Randomness (q-SR)

ρ passes a q-ST pSkqkPω if for all δ, ρ passes pSkqkPω at level δ. ρ is q-SR
if it passes all q-STs.
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Theorem (B.)
For all states ρ, ρ is q-SR if and only if ρ is q-MLR.

pùñq A q-MLT is a q-ST .
pðùq let ρ “ pρnqnPω fail a q-ST pSkqkPω at level δ. Build a q-MLT
pGmqmPω, with Gm “ pGm

n qnPω, which ρ fails at level δ2{72.
WLOG, Sk

n “ H for n ą k .
Notation:

Am
t “ tψ P C2t

alg : ||ψ|| “ 1,
ÿ

kďt

Trp|ψ
〉〈
ψ|Sk

t q ą
2mδ
6
u,

for t,m P ω. We may skip the proof in the interests of time and go
straight to the application.
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Corollary (B.): The set of q-MLR states is convex

A finite convex combination of q-MLR states is q-MLR: If pρi qiăk are
q-MLR and

ř

iăk αi “ 1, then ρ “
ř

iăk αiρ
i is q-MLR.

Towards a contradiction,
let there be a q-MLT, pGmqmPω and a δ ą 0 such that @m P ω,
ρpGmq ą δ.
So, @m P ω, Dn such that TrpρnGm

n q ą δ where ρn “
ř

iăk αiρ
i
n.

I.e, @m P ω, Dn such that

δ ă Trp
ÿ

iăk

αiρ
i
nG

m
n q “

ÿ

iăk

αiTrpρinG
m
n q.

By convexity there must be an i such that TrpGm
n ρ

i
nq ą δ
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So, @m Dn, i such that Tr (ρinG
m
n q ą δ.

There are only finitely many i s.
By pigeonhole, there is an i such that D8m with Tr pρinG

m
n q ą δ, for

some n.
So, D8m with ρi pGmq ą δ.
So, ρi fails the q-Solovay test pGmqmPω and hence is not q-MLR by
our previous result.

Tejas Bhojraj (UW-Madison) Quantum Solovay randomness Waterloo, June 2018 26 / 41



So, @m Dn, i such that Tr (ρinG
m
n q ą δ.

There are only finitely many i s.

By pigeonhole, there is an i such that D8m with Tr pρinG
m
n q ą δ, for

some n.
So, D8m with ρi pGmq ą δ.
So, ρi fails the q-Solovay test pGmqmPω and hence is not q-MLR by
our previous result.

Tejas Bhojraj (UW-Madison) Quantum Solovay randomness Waterloo, June 2018 26 / 41



So, @m Dn, i such that Tr (ρinG
m
n q ą δ.

There are only finitely many i s.
By pigeonhole, there is an i such that D8m with Tr pρinG

m
n q ą δ, for

some n.

So, D8m with ρi pGmq ą δ.
So, ρi fails the q-Solovay test pGmqmPω and hence is not q-MLR by
our previous result.

Tejas Bhojraj (UW-Madison) Quantum Solovay randomness Waterloo, June 2018 26 / 41



So, @m Dn, i such that Tr (ρinG
m
n q ą δ.

There are only finitely many i s.
By pigeonhole, there is an i such that D8m with Tr pρinG

m
n q ą δ, for

some n.
So, D8m with ρi pGmq ą δ.

So, ρi fails the q-Solovay test pGmqmPω and hence is not q-MLR by
our previous result.

Tejas Bhojraj (UW-Madison) Quantum Solovay randomness Waterloo, June 2018 26 / 41



So, @m Dn, i such that Tr (ρinG
m
n q ą δ.

There are only finitely many i s.
By pigeonhole, there is an i such that D8m with Tr pρinG

m
n q ą δ, for

some n.
So, D8m with ρi pGmq ą δ.
So, ρi fails the q-Solovay test pGmqmPω and hence is not q-MLR by
our previous result.

Tejas Bhojraj (UW-Madison) Quantum Solovay randomness Waterloo, June 2018 26 / 41



Thank You
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Constructing the q-MLT test

Build Gm “ pGm
n qn: Procedure to build Gm

n .

Say we are given Cm
n´1, a maximal (under set inclusion) orthonormal

subset of Am
n´1, and Gm

n´1 “ t|ψ
〉〈
ψ| : ψ P Cm

n´1u. Let

Dm
n “ t|ψ

〉
b |i

〉
: i P t1, 0u, ψ P Cm

n´1u.

Easy to see that Dm
n Ď Am

n since Cm
n´1 Ď Am

n´1.
Let Cm

n be S where S is a maximal orthonormal set such that
Dm
n Ď S Ď Am

n .
Let Gm

n “ t|ψ
〉〈
ψ| : ψ P Cm

n u.
End
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Verification

Lemma
For each m, Gm “ pGm

n qnPω is a quantum-Σ0
1 set.

Given Cm
n´1, we built Cm

n in stages t. Cm
n,0 “ Dm

n . To compute Cm
n,s

given Cm
n,s´1, check if:

Dτ P Am
n such that @ψ P Cm

n,s´1,
〈
τ |ψ

〉
“ 0.

This check is decidable as ThpCalg q is.
If yes, find a witness τ and set Cm

n,s “ tτu Y Cm
n,s´1. If no, set

Cm
n “ Cm

n,s´1 and stop. By finite dimensionality, at some stage we
must stop.
So, pGm

n qnPω is a uniformly computable sequence.
By construction, rangepGm

n´1 b I2q Ă rangepGm
n q.
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If yes, find a witness τ and set Cm
n,s “ tτu Y Cm

n,s´1. If no, set
Cm
n “ Cm

n,s´1 and stop. By finite dimensionality, at some stage we
must stop.
So, pGm

n qnPω is a uniformly computable sequence.
By construction, rangepGm

n´1 b I2q Ă rangepGm
n q.
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Lemma
pGmqmPω is a q-MLT.

1 ě
ÿ

k

τpSkq ě
ÿ

k

2´nTrpSk
n q,

by definition
For fixed m, n we have that,

2n ě
ÿ

k

TrpSk
n q

ě
ÿ

k

Trp
ÿ

ψPCm
n

|ψ
〉〈
ψ|Sk

n q

“
ÿ

ψPCm
n

ÿ

k

Trp|ψ
〉〈
ψ|Sk

n q

ą |Cm
n |

2mδ
6

“ TrpGm
n q

2mδ
6
.
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Lemma:
ρ fails pGmqm at level δ2{72. Or, for all m P ω, there is an n such that

TrpρnGm
n q ě

δ2

72
.

Let m be arbitrary.
Fix a n so that there exist 2m many ks less than n such that
TrpρnSk

n q ą δ.
Case 1: ρn is algebraic:

ρn “
ÿ

iď2n
αi |ψ

i
〉〈
ψi |

ř

iď2n αi “ 1 and for each i , |ψi
〉
P C2n

alg and ||ψi || ď 1.
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Fix i ď 2n; let ψ “ ψi . Write

ψ “ coψo ` cpψp

where ψo P rangepGm
n q and ψp P rangepGm

n q
K are unit vectors,

co , cp P C and |c0|2 ` |cp|2 “ ||ψ||2 ď 1.
For a k , let Sk

n “ S . An easy, but long, calculation shows:

TrpS |ψ
〉〈
ψ|q ď

|co |
2〈Sψo |Sψo

〉
` |cp|

2〈Sψp|Sψp

〉
` 2|co ||cp||

〈
Sψp|Sψo

〉
|
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By Cauchy-Schwarz:

|
〈
Sψp|Sψo

〉
| ď ||Sψo ||||Sψp||

ď pmaxt||Sψo ||, ||Sψp||uq
2

ď ||Sψo ||
2 ` ||Sψp||

2.

Using this and that |co |, |cp| ď 1,
TrpS |ψ

〉〈
ψ|q

ď |co |
2〈Sψo |Sψo

〉
` |cp|

2〈Sψp|Sψp

〉
` 2|co ||cp|p||Sψo ||

2 ` ||Sψp||
2q

ď |co |
〈
Sψo |Sψo

〉
` |cp|

〈
Sψp|Sψp

〉
` 2|co |||Sψo ||

2 ` 2|cp|||Sψp||
2

“ 3p|co |
〈
Sψo |Sψo

〉
` |cp|

〈
Sψp|Sψp

〉
q
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By the choice of n, pick M Ď t1, 2...nu such that |M| “ 2m and
TrpρnSk

n q ą δ for each k in M.

2mδ ă
ÿ

kPM

TrpρnSk
n q

“
ÿ

kPM

Trp
ÿ

iď2n
αi |ψ

i
〉〈
ψi |Sk

n q

“
ÿ

kPM

ÿ

iď2n
αiTrp|ψi

〉〈
ψi |Sk

n q

“
ÿ

iď2n
αi

ÿ

kPM

Trp|ψi
〉〈
ψi |Sk

n q

ď
ÿ

iď2n
αi

ÿ

kPM

3p|c io |
〈
Sk
nψ

i
o |S

k
nψ

i
o

〉
` |c ip|

〈
Sk
nψ

i
p|S

k
nψ

i
p

〉
q.
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So,

2mδ
3
ă

ÿ

iď2n
αi

ÿ

kPM

p|c io |
〈
Sk
nψ

i
o |S

k
nψ

i
o

〉
` |c ip|

〈
Sk
nψ

i
p|S

k
nψ

i
p

〉
q

“
ÿ

iď2n
αi |c

i
o |

ÿ

kPM

〈
Sk
nψ

i
o |S

k
nψ

i
o

〉
`

ÿ

iď2n
αi |c

i
p|

ÿ

kPM

〈
Sk
nψ

i
p|S

k
nψ

i
p

〉

We now bound the second sum on the right-hand side.
Make a key use of the maximality of the orthonormal subset chosen
during the construction.
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@i , ψi
p P rangepG

m
n q
K X C2n

alg .

Hence, ψi
p is perpendicular to each element of Cm

n .

If ψi
p P A

m
n , then tψ

i
pu Y Cm

n is a orthonormal subset of Am
n strictly

containing Cm
n , contradicting the maximality of Cm

n .
So, ψi

p R A
m
n for each i .

But, ψi
p P C2n

alg and ||ψi
p|| “ 1. So the only way ψi

p R A
m
n is if

ÿ

kďn

Trp|ψi
p

〉〈
ψi
p|S

k
n q ď

2mδ
6
.
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Recall

We are trying to bound from above the second term on the right hand side
of

2mδ
3
ă

ÿ

iď2n
αi |c

i
o |

ÿ

kPM

〈
Sk
nψ

i
o |S

k
nψ

i
o

〉
`

ÿ

iď2n
αi |c

i
p|

ÿ

kPM

〈
Sk
nψ

i
p|S

k
nψ

i
p

〉
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So, bound the sum as follows:
ÿ

iď2n
αi |c

i
p|

ÿ

kPM

〈
Sk
nψ

i
p|S

k
nψ

i
p

〉

ď
ÿ

iď2n
αi |c

i
p|
2mδ
6
ă

ÿ

iď2n
αi

2mδ
6
ď

2mδ
6

This means:
ÿ

iď2n
αi |c

i
o |

ÿ

kPM

〈
Sk
nψ

i
o |S

k
nψ

i
o

〉
ą

2mδ
6

Tejas Bhojraj (UW-Madison) Quantum Solovay randomness Waterloo, June 2018 39 / 41



So, bound the sum as follows:
ÿ

iď2n
αi |c

i
p|

ÿ

kPM

〈
Sk
nψ

i
p|S

k
nψ

i
p

〉

ď
ÿ

iď2n
αi |c

i
p|
2mδ
6
ă

ÿ

iď2n
αi

2mδ
6
ď

2mδ
6

This means:
ÿ

iď2n
αi |c

i
o |

ÿ

kPM

〈
Sk
nψ

i
o |S

k
nψ

i
o

〉
ą

2mδ
6

Tejas Bhojraj (UW-Madison) Quantum Solovay randomness Waterloo, June 2018 39 / 41



So, bound the sum as follows:
ÿ

iď2n
αi |c

i
p|

ÿ

kPM

〈
Sk
nψ

i
p|S

k
nψ

i
p

〉

ď
ÿ

iď2n
αi |c

i
p|
2mδ
6
ă

ÿ

iď2n
αi

2mδ
6
ď

2mδ
6

This means:
ÿ

iď2n
αi |c

i
o |

ÿ

kPM

〈
Sk
nψ

i
o |S

k
nψ

i
o

〉
ą

2mδ
6

Tejas Bhojraj (UW-Madison) Quantum Solovay randomness Waterloo, June 2018 39 / 41



|
〈
Sk
nψ

i
o |S

k
nψ

i
o

〉
| ď 1 and |M| “ 2m

So, cancel the 2ms to get:

δ

6
ă

ÿ

iď2n
αi |c

i
o |.

As
ř

iď2n αi “ 1, by Jensen’s inequality:

δ2

36
ă

`

ÿ

iď2n
αi |c

i
o |
˘2
ď

ÿ

iď2n
αi |c

i
o |

2

Finally, it is easy to see that

TrpρnG
m
n q “

ÿ

iď2n
αiTrp|c ioψ

i
o

〉〈
c ioψ

i
o |q

“
ÿ

iď2n
αi |c

i
o |

2 ą
δ2

36

Tejas Bhojraj (UW-Madison) Quantum Solovay randomness Waterloo, June 2018 40 / 41



|
〈
Sk
nψ

i
o |S

k
nψ

i
o

〉
| ď 1 and |M| “ 2m

So, cancel the 2ms to get:

δ

6
ă

ÿ

iď2n
αi |c

i
o |.

As
ř

iď2n αi “ 1, by Jensen’s inequality:

δ2

36
ă

`

ÿ

iď2n
αi |c

i
o |
˘2
ď

ÿ

iď2n
αi |c

i
o |

2

Finally, it is easy to see that

TrpρnG
m
n q “

ÿ

iď2n
αiTrp|c ioψ

i
o

〉〈
c ioψ

i
o |q

“
ÿ

iď2n
αi |c

i
o |

2 ą
δ2

36

Tejas Bhojraj (UW-Madison) Quantum Solovay randomness Waterloo, June 2018 40 / 41



|
〈
Sk
nψ

i
o |S

k
nψ

i
o

〉
| ď 1 and |M| “ 2m

So, cancel the 2ms to get:

δ

6
ă

ÿ

iď2n
αi |c

i
o |.

As
ř

iď2n αi “ 1, by Jensen’s inequality:

δ2

36
ă

`

ÿ

iď2n
αi |c

i
o |
˘2
ď

ÿ

iď2n
αi |c

i
o |

2

Finally, it is easy to see that

TrpρnG
m
n q “

ÿ

iď2n
αiTrp|c ioψ

i
o

〉〈
c ioψ

i
o |q

“
ÿ

iď2n
αi |c

i
o |

2 ą
δ2

36

Tejas Bhojraj (UW-Madison) Quantum Solovay randomness Waterloo, June 2018 40 / 41



|
〈
Sk
nψ

i
o |S

k
nψ

i
o

〉
| ď 1 and |M| “ 2m

So, cancel the 2ms to get:

δ

6
ă

ÿ

iď2n
αi |c

i
o |.

As
ř

iď2n αi “ 1, by Jensen’s inequality:

δ2

36
ă

`

ÿ

iď2n
αi |c

i
o |
˘2
ď

ÿ

iď2n
αi |c

i
o |

2

Finally, it is easy to see that

TrpρnG
m
n q “

ÿ

iď2n
αiTrp|c ioψ

i
o

〉〈
c ioψ

i
o |q

“
ÿ

iď2n
αi |c

i
o |

2 ą
δ2

36

Tejas Bhojraj (UW-Madison) Quantum Solovay randomness Waterloo, June 2018 40 / 41



Case 2: ρn is not expressible as a convex sum of algebraic projections.
Since tψ P C2n

alg : ||ψ|| ď 1u is dense in the closed unit ball in C2n ,

using case 1, we see that TrpρnGm
n q ą

δ2

72
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