Quantum Solovay randomness

Tejas Bhojraj

UW-Madison
Waterloo, June 2018

Reference: 'Martin-Löf random quantum states', by Nies and Scholz. I will first discuss this paper and then outline some answers to the questions posed in it.

All the quantum physics needed for this talk

All the quantum physics needed for this talk....in one slide.

All the quantum physics needed for this talk....in one slide.

- First, a sketch. We will formalize it soon.

All the quantum physics needed for this talk....in one slide.

- First, a sketch. We will formalize it soon.
- A quantum mechanical system is a superposition of 'classical' states.

All the quantum physics needed for this talk....in one slide.

- First, a sketch. We will formalize it soon.
- A quantum mechanical system is a superposition of 'classical' states.
- It's dimension is the number of classical states it is a superposition of.

All the quantum physics needed for this talk....in one slide.

- First, a sketch. We will formalize it soon.
- A quantum mechanical system is a superposition of 'classical' states.
- It's dimension is the number of classical states it is a superposition of.
- A measurement of the system collapses it into one of the classical states. Measuring a classical state does not cause any collapse. Hence they are called 'classical'.

All the quantum physics needed for this talk....in one slide.

- First, a sketch. We will formalize it soon.
- A quantum mechanical system is a superposition of 'classical' states.
- It's dimension is the number of classical states it is a superposition of.
- A measurement of the system collapses it into one of the classical states. Measuring a classical state does not cause any collapse. Hence they are called 'classical'.
- Let us formalize this.

All the quantum physics needed for this talk....in one slide.

- First, a sketch. We will formalize it soon.
- A quantum mechanical system is a superposition of 'classical' states.
- It's dimension is the number of classical states it is a superposition of.
- A measurement of the system collapses it into one of the classical states. Measuring a classical state does not cause any collapse. Hence they are called 'classical'.
- Let us formalize this.
- We represent a n-dimensional system by a matrix $\psi \psi^{*}$ where $\psi \in \mathbb{C}^{n}$ is a unit column vector (ψ^{*} is the complex conjugate transpose of ψ).

All the quantum physics needed for this talk....in one slide.

- First, a sketch. We will formalize it soon.
- A quantum mechanical system is a superposition of 'classical' states.
- It's dimension is the number of classical states it is a superposition of.
- A measurement of the system collapses it into one of the classical states. Measuring a classical state does not cause any collapse. Hence they are called 'classical'.
- Let us formalize this.
- We represent a n-dimensional system by a matrix $\psi \psi^{*}$ where $\psi \in \mathbb{C}^{n}$ is a unit column vector (ψ^{*} is the complex conjugate transpose of ψ).
- Fix a orthonormal basis $b_{1}, . ., b_{n}$ of \mathbb{C}^{n}. The $b_{i} b_{i}^{*}$ s will be the classical states.

All the quantum physics needed for this talk....in one slide.

- First, a sketch. We will formalize it soon.
- A quantum mechanical system is a superposition of 'classical' states.
- It's dimension is the number of classical states it is a superposition of.
- A measurement of the system collapses it into one of the classical states. Measuring a classical state does not cause any collapse. Hence they are called 'classical'.
- Let us formalize this.
- We represent a n-dimensional system by a matrix $\psi \psi^{*}$ where $\psi \in \mathbb{C}^{n}$ is a unit column vector (ψ^{*} is the complex conjugate transpose of ψ).
- Fix a orthonormal basis $b_{1}, . ., b_{n}$ of \mathbb{C}^{n}. The $b_{i} b_{i}^{*}$ s will be the classical states.
- A measurement is represented by a matrix H with eigenvectors $b_{1}, . ., b_{n}$ with eigenvalues equalling 0 or 1 . So, H is a Hermitian projection.

Okay, I tried but I need two.

Okay, I tried but I need two.

- Measuring H on $\psi \psi^{*}$ causes the system to collapse to one of the classical states $b_{i} b_{i}^{*}$ and the outcome of the measurement is e_{i} where $H b_{i}=e_{i} b_{i}$ (i.e, the eigenvalue corresponding to b_{i}.)

Okay, I tried but I need two.

- Measuring H on $\psi \psi^{*}$ causes the system to collapse to one of the classical states $b_{i} b_{i}^{*}$ and the outcome of the measurement is e_{i} where $H b_{i}=e_{i} b_{i}$ (i.e, the eigenvalue corresponding to b_{i}.)
- The probability of collapsing $\psi \psi^{*}$ to $b_{i} b_{i}^{*}$ on measurement is $\left|\left\langle\psi, b_{i}\right\rangle\right|^{2}$.

Okay, I tried but I need two.

- Measuring H on $\psi \psi^{*}$ causes the system to collapse to one of the classical states $b_{i} b_{i}^{*}$ and the outcome of the measurement is e_{i} where $H b_{i}=e_{i} b_{i}$ (i.e, the eigenvalue corresponding to b_{i}.)
- The probability of collapsing $\psi \psi^{*}$ to $b_{i} b_{i}^{*}$ on measurement is $\left|\left\langle\psi, b_{i}\right\rangle\right|^{2}$.
- By orthonormality, we see that measurements do not collapse classical states.

Okay, I tried but I need two.

- Measuring H on $\psi \psi^{*}$ causes the system to collapse to one of the classical states $b_{i} b_{i}^{*}$ and the outcome of the measurement is e_{i} where $H b_{i}=e_{i} b_{i}$ (i.e, the eigenvalue corresponding to b_{i}.)
- The probability of collapsing $\psi \psi^{*}$ to $b_{i} b_{i}^{*}$ on measurement is $\left|\left\langle\psi, b_{i}\right\rangle\right|^{2}$.
- By orthonormality, we see that measurements do not collapse classical states.
- One can check that the expected value of measuring H on $\psi \psi^{*}$ is Trace ($H \psi \psi^{*}$).

Qubits

- A qubit is a 2-dimensional system.

Qubits

- A qubit is a 2-dimensional system.
- Bra-Ket notation: denote a column vector v by $|v\rangle$ and v^{*} by $\langle v|$.

Qubits

- A qubit is a 2-dimensional system.
- Bra-Ket notation: denote a column vector v by $|v\rangle$ and v^{*} by $\langle v|$.
- Let H be a Hermitian operator on \mathbb{C}^{2} with eigenpairs $\left(V_{1}, 1\right)$ and $\left(V_{0}, 0\right)$ with V_{1} and V_{0} forming a orthonormal basis.

Qubits

- A qubit is a 2-dimensional system.
- Bra-Ket notation: denote a column vector v by $|v\rangle$ and v^{*} by $\langle v|$.
- Let H be a Hermitian operator on \mathbb{C}^{2} with eigenpairs $\left(V_{1}, 1\right)$ and $\left(V_{0}, 0\right)$ with V_{1} and V_{0} forming a orthonormal basis.
- Denote V_{0}, V_{1} by $|0\rangle$ and $|1\rangle$.

Qubits

- A qubit is a 2-dimensional system.
- Bra-Ket notation: denote a column vector v by $|v\rangle$ and v^{*} by $\langle v|$.
- Let H be a Hermitian operator on \mathbb{C}^{2} with eigenpairs $\left(V_{1}, 1\right)$ and $\left(V_{0}, 0\right)$ with V_{1} and V_{0} forming a orthonormal basis.
- Denote V_{0}, V_{1} by $|0\rangle$ and $|1\rangle$.
- So, $\left(\mathbb{C}^{2}\right)^{\otimes n}:=H_{n}$ has a orthonormal basis comprised of elements of the form: Fix a $\sigma \in 2^{n}$. The basis vector given by this σ is

$$
|\sigma(0)\rangle \otimes|\sigma(1)\rangle \otimes \ldots \otimes|\sigma(n-1)\rangle=\bigotimes_{i<n}|\sigma(i)\rangle:=|\sigma\rangle
$$

Qubits

- A qubit is a 2-dimensional system.
- Bra-Ket notation: denote a column vector v by $|v\rangle$ and v^{*} by $\langle v|$.
- Let H be a Hermitian operator on \mathbb{C}^{2} with eigenpairs $\left(V_{1}, 1\right)$ and $\left(V_{0}, 0\right)$ with V_{1} and V_{0} forming a orthonormal basis.
- Denote V_{0}, V_{1} by $|0\rangle$ and $|1\rangle$.
- So, $\left(\mathbb{C}^{2}\right)^{\otimes n}:=H_{n}$ has a orthonormal basis comprised of elements of the form: Fix a $\sigma \in 2^{n}$. The basis vector given by this σ is

$$
|\sigma(0)\rangle \otimes|\sigma(1)\rangle \otimes \ldots \otimes|\sigma(n-1)\rangle=\bigotimes_{i<n}|\sigma(i)\rangle:=|\sigma\rangle
$$

- If $|\psi\rangle \in H_{n}$ is a unit vector, the matrix $|\psi\rangle\langle\psi|$ is said to be a pure state.

Qubits

- A qubit is a 2-dimensional system.
- Bra-Ket notation: denote a column vector v by $|v\rangle$ and v^{*} by $\langle v|$.
- Let H be a Hermitian operator on \mathbb{C}^{2} with eigenpairs $\left(V_{1}, 1\right)$ and $\left(V_{0}, 0\right)$ with V_{1} and V_{0} forming a orthonormal basis.
- Denote V_{0}, V_{1} by $|0\rangle$ and $|1\rangle$.
- So, $\left(\mathbb{C}^{2}\right)^{\otimes n}:=H_{n}$ has a orthonormal basis comprised of elements of the form: Fix a $\sigma \in 2^{n}$. The basis vector given by this σ is

$$
|\sigma(0)\rangle \otimes|\sigma(1)\rangle \otimes \ldots \otimes|\sigma(n-1)\rangle=\bigotimes_{i<n}|\sigma(i)\rangle:=|\sigma\rangle
$$

- If $|\psi\rangle \in H_{n}$ is a unit vector, the matrix $|\psi\rangle\langle\psi|$ is said to be a pure state.
- A mixed state is a convex combination of 2 or more pure states.

Qubits

- A qubit is a 2-dimensional system.
- Bra-Ket notation: denote a column vector v by $|v\rangle$ and v^{*} by $\langle v|$.
- Let H be a Hermitian operator on \mathbb{C}^{2} with eigenpairs $\left(V_{1}, 1\right)$ and $\left(V_{0}, 0\right)$ with V_{1} and V_{0} forming a orthonormal basis.
- Denote V_{0}, V_{1} by $|0\rangle$ and $|1\rangle$.
- So, $\left(\mathbb{C}^{2}\right)^{\otimes n}:=H_{n}$ has a orthonormal basis comprised of elements of the form: Fix a $\sigma \in 2^{n}$. The basis vector given by this σ is

$$
|\sigma(0)\rangle \otimes|\sigma(1)\rangle \otimes \ldots \otimes|\sigma(n-1)\rangle=\bigotimes_{i<n}|\sigma(i)\rangle:=|\sigma\rangle
$$

- If $|\psi\rangle \in H_{n}$ is a unit vector, the matrix $|\psi\rangle\langle\psi|$ is said to be a pure state.
- A mixed state is a convex combination of 2 or more pure states.
- A pure state is a single quantum system while a mixed state is a probabilistic mixture of pure states.

The Density Matrix

- The mixed and pure states are called density matrices.

The Density Matrix

- The mixed and pure states are called density matrices.
- In fact, any Hermitian, positive semidefinite matrix with trace $=1$ gives a state and is a density matrix.

The Density Matrix

- The mixed and pure states are called density matrices.
- In fact, any Hermitian, positive semidefinite matrix with trace $=1$ gives a state and is a density matrix.
- If a Hermitian ρ on H_{n} has $\operatorname{Trace}(\rho)=1$, then it has a complete orthonormal set of eigenvectors $\left(\psi_{i}\right)_{i<2^{n}}$. If the eigenpairs are $\left(\alpha_{i}, \psi_{i}\right)$, then

$$
\begin{equation*}
\rho=\sum_{i<2^{n}} \alpha_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \tag{1}
\end{equation*}
$$

The sum is convex as $1=\operatorname{Tr}(\rho)=\sum_{i} \alpha_{i}$. So, ρ gives a state.

The Density Matrix

- The mixed and pure states are called density matrices.
- In fact, any Hermitian, positive semidefinite matrix with trace $=1$ gives a state and is a density matrix.
- If a Hermitian ρ on H_{n} has $\operatorname{Trace}(\rho)=1$, then it has a complete orthonormal set of eigenvectors $\left(\psi_{i}\right)_{i<2^{n}}$. If the eigenpairs are $\left(\alpha_{i}, \psi_{i}\right)$, then

$$
\begin{equation*}
\rho=\sum_{i<2^{n}} \alpha_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \tag{1}
\end{equation*}
$$

The sum is convex as $1=\operatorname{Tr}(\rho)=\sum_{i} \alpha_{i}$. So, ρ gives a state.

- The density matrix $\rho=\sum_{i<2^{n}} \alpha_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$ gives a system which is in $\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$ with probability α_{i}

The Density Matrix

- The mixed and pure states are called density matrices.
- In fact, any Hermitian, positive semidefinite matrix with trace $=1$ gives a state and is a density matrix.
- If a Hermitian ρ on H_{n} has $\operatorname{Trace}(\rho)=1$, then it has a complete orthonormal set of eigenvectors $\left(\psi_{i}\right)_{i<2^{n}}$. If the eigenpairs are $\left(\alpha_{i}, \psi_{i}\right)$, then

$$
\begin{equation*}
\rho=\sum_{i<2^{n}} \alpha_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \tag{1}
\end{equation*}
$$

The sum is convex as $1=\operatorname{Tr}(\rho)=\sum_{i} \alpha_{i}$. So, ρ gives a state.

- The density matrix $\rho=\sum_{i<2^{n}} \alpha_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$ gives a system which is in $\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$ with probability α_{i}
- Notation: $L\left(H_{n}\right)$ denotes the space of 2^{n} by 2^{n} matrices.
- So far we have seen: a system of n qubits is modeled by a density matrix in $L\left(H_{n}\right)$.
- So far we have seen: a system of n qubits is modeled by a density matrix in $L\left(H_{n}\right)$.
- A system in $H_{n+1}=H_{n} \otimes H_{1}$ which is a composite of systems $\sigma \in L\left(H_{n}\right)$ and $\tau \in L\left(H_{1}\right)$ is described by $\rho=\sigma \otimes \tau \in L\left(H_{n}\right) \otimes L\left(H_{1}\right)$.
- So far we have seen: a system of n qubits is modeled by a density matrix in $L\left(H_{n}\right)$.
- A system in $H_{n+1}=H_{n} \otimes H_{1}$ which is a composite of systems $\sigma \in L\left(H_{n}\right)$ and $\tau \in L\left(H_{1}\right)$ is described by $\rho=\sigma \otimes \tau \in L\left(H_{n}\right) \otimes L\left(H_{1}\right)$.
- So, a composite system is a product state (pure tensor).
- So far we have seen: a system of n qubits is modeled by a density matrix in $L\left(H_{n}\right)$.
- A system in $H_{n+1}=H_{n} \otimes H_{1}$ which is a composite of systems $\sigma \in L\left(H_{n}\right)$ and $\tau \in L\left(H_{1}\right)$ is described by $\rho=\sigma \otimes \tau \in L\left(H_{n}\right) \otimes L\left(H_{1}\right)$.
- So, a composite system is a product state (pure tensor).
- The pure tensors do not exhaust the set of density matrices in $L\left(H_{n+1}\right)$.
- So far we have seen: a system of n qubits is modeled by a density matrix in $L\left(H_{n}\right)$.
- A system in $H_{n+1}=H_{n} \otimes H_{1}$ which is a composite of systems $\sigma \in L\left(H_{n}\right)$ and $\tau \in L\left(H_{1}\right)$ is described by $\rho=\sigma \otimes \tau \in L\left(H_{n}\right) \otimes L\left(H_{1}\right)$.
- So, a composite system is a product state (pure tensor).
- The pure tensors do not exhaust the set of density matrices in $L\left(H_{n+1}\right)$.
- Take a $\rho \in L\left(H_{n+1}\right)$ which is not a pure tensor.
- So far we have seen: a system of n qubits is modeled by a density matrix in $L\left(H_{n}\right)$.
- A system in $H_{n+1}=H_{n} \otimes H_{1}$ which is a composite of systems $\sigma \in L\left(H_{n}\right)$ and $\tau \in L\left(H_{1}\right)$ is described by $\rho=\sigma \otimes \tau \in L\left(H_{n}\right) \otimes L\left(H_{1}\right)$.
- So, a composite system is a product state (pure tensor).
- The pure tensors do not exhaust the set of density matrices in $L\left(H_{n+1}\right)$.
- Take a $\rho \in L\left(H_{n+1}\right)$ which is not a pure tensor.
- It is not a composite of states in $L\left(H_{n}\right)$ and $L\left(H_{1}\right)$.
- So far we have seen: a system of n qubits is modeled by a density matrix in $L\left(H_{n}\right)$.
- A system in $H_{n+1}=H_{n} \otimes H_{1}$ which is a composite of systems $\sigma \in L\left(H_{n}\right)$ and $\tau \in L\left(H_{1}\right)$ is described by $\rho=\sigma \otimes \tau \in L\left(H_{n}\right) \otimes L\left(H_{1}\right)$.
- So, a composite system is a product state (pure tensor).
- The pure tensors do not exhaust the set of density matrices in $L\left(H_{n+1}\right)$.
- Take a $\rho \in L\left(H_{n+1}\right)$ which is not a pure tensor.
- It is not a composite of states in $L\left(H_{n}\right)$ and $L\left(H_{1}\right)$.
- Such a ρ is called entangled.

Partial Trace

Partial Trace

- Given $\rho \in L_{n+1}$ we want to find the state given by ignoring the last qubit.

Partial Trace

- Given $\rho \in L_{n+1}$ we want to find the state given by ignoring the last qubit.
- What does 'ignoring' mean?

Partial Trace

- Given $\rho \in L_{n+1}$ we want to find the state given by ignoring the last qubit.
- What does 'ignoring' mean?
- It means we need a $\tau \in L_{n}$ which describes measurements of the first n qubits of ρ.

Partial Trace

- Given $\rho \in L_{n+1}$ we want to find the state given by ignoring the last qubit.
- What does 'ignoring' mean?
- It means we need a $\tau \in L_{n}$ which describes measurements of the first n qubits of ρ.
- I.e, we need a τ such that for any hermitian $O \in L_{n}$,

$$
\operatorname{Tr}(\tau O)=\operatorname{Tr}(\rho(O \otimes I))
$$

Partial Trace

- Given $\rho \in L_{n+1}$ we want to find the state given by ignoring the last qubit.
- What does 'ignoring' mean?
- It means we need a $\tau \in L_{n}$ which describes measurements of the first n qubits of ρ.
- I.e, we need a τ such that for any hermitian $O \in L_{n}$,

$$
\operatorname{Tr}(\tau O)=\operatorname{Tr}(\rho(O \otimes I))
$$

- (Recall: The expectation of measuring O on ϕ is $\operatorname{Tr}(\phi O)$.)

Partial Trace

- Given $\rho \in L_{n+1}$ we want to find the state given by ignoring the last qubit.
- What does 'ignoring' mean?
- It means we need a $\tau \in L_{n}$ which describes measurements of the first n qubits of ρ.
- I.e, we need a τ such that for any hermitian $O \in L_{n}$,

$$
\operatorname{Tr}(\tau O)=\operatorname{Tr}(\rho(O \otimes I))
$$

- (Recall: The expectation of measuring O on ϕ is $\operatorname{Tr}(\phi O)$.)
- If $\rho=\lambda \otimes \sigma$ for a $\lambda \in L_{n}$ and $\sigma \in L_{1}$ then,

$$
\operatorname{Tr}(\rho(O \otimes I))=\operatorname{Tr}(\lambda O \otimes \sigma I)=\operatorname{Tr}(\lambda O) \operatorname{Tr}(\sigma)=\operatorname{Tr}(\lambda O)
$$

So, $\tau=\lambda$ works.

- If ρ is entangled, the choice of τ is not so obvious
- Denote $L\left(H_{n}\right)$ by L_{n}. Define

$$
T_{1}: L_{n+1} \longrightarrow L_{n}
$$

by $T_{1}(A \otimes B):=A * \operatorname{Tr}(B)$ for any $A \in L_{n}, B \in L_{1}$ and then extending it linearly.

- Denote $L\left(H_{n}\right)$ by L_{n}. Define

$$
T_{1}: L_{n+1} \longrightarrow L_{n}
$$

by $T_{1}(A \otimes B):=A * \operatorname{Tr}(B)$ for any $A \in L_{n}, B \in L_{1}$ and then extending it linearly.

- This defines T_{1} since if $\rho \in L_{n+1}$, it is a finite sum of the form

$$
\rho=\sum_{i} \alpha_{i}\left(A_{i} \otimes B_{i}\right)
$$

for scalars $\alpha_{i}, A_{i} \in L_{n}$ and $B_{i} \in L_{1}$.(After modding out by the usual \equiv)

- Denote $L\left(H_{n}\right)$ by L_{n}. Define

$$
T_{1}: L_{n+1} \longrightarrow L_{n}
$$

by $T_{1}(A \otimes B):=A * \operatorname{Tr}(B)$ for any $A \in L_{n}, B \in L_{1}$ and then extending it linearly.

- This defines T_{1} since if $\rho \in L_{n+1}$, it is a finite sum of the form

$$
\rho=\sum_{i} \alpha_{i}\left(A_{i} \otimes B_{i}\right)
$$

for scalars $\alpha_{i}, A_{i} \in L_{n}$ and $B_{i} \in L_{1}$.(After modding out by the usual \equiv)

- It turns out that $T_{1}(\rho)$ is the required τ
- There is a arrangement of the bases of H_{n} which makes computing the partial trace easy.
- There is a arrangement of the bases of H_{n} which makes computing the partial trace easy.
- Details (skip)

Recall that H_{n} has a orthonormal basis comprised of elements of the form

$$
\bigotimes_{i<n}^{\bigotimes}|\sigma(i)\rangle:=|\sigma\rangle \text { for a } \sigma \in 2^{n}
$$

Order them as follows: given $\sigma<\tau$, define
(1) $\sigma 0<\sigma 1$
(2) $\sigma 1>\tau 0$
(3) $\sigma i<\tau i$ for $i=0,1$

For $A \in L\left(H_{n}\right), B \in L\left(H_{1}\right)$,

$$
A \otimes B=\left[\begin{array}{ll}
A b_{00} & A b_{01} \\
A b_{10} & A b_{11}
\end{array}\right] \text { if } B=\left[\begin{array}{ll}
b_{00} & b_{01} \\
b_{10} & b_{11}
\end{array}\right]
$$

Finding the Partial Trace of an Operator from it's Matrix

- Let $\rho \in L_{n+1}$

$$
\rho=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]
$$

be with each block in L_{n}

Finding the Partial Trace of an Operator from it's Matrix

- Let $\rho \in L_{n+1}$

$$
\rho=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]
$$

be with each block in L_{n}

- By the arrangement of the basis elements, we see that

$$
T_{1}(\rho)=A+D
$$

The Partial Trace of an Entangled State is Mixed

- Let $\psi=(|1\rangle \otimes|1\rangle+|0\rangle \otimes|0\rangle\rangle / \sqrt{2}=(|11\rangle+|00\rangle) / \sqrt{2}$

The Partial Trace of an Entangled State is Mixed

- Let $\psi=(|1\rangle \otimes|1\rangle+|0\rangle \otimes|0\rangle) / \sqrt{2}=(|11\rangle+|00\rangle) / \sqrt{2}$
- The pure state representing it is

$$
|\psi\rangle\langle\psi|=(|00\rangle\langle 00|+|00\rangle\langle 11|+|11\rangle\langle 00|+|11\rangle\langle 11|) / 2
$$

The Partial Trace of an Entangled State is Mixed

- Let $\psi=(|1\rangle \otimes|1\rangle+|0\rangle \otimes|0\rangle) / \sqrt{2}=(|11\rangle+|00\rangle) / \sqrt{2}$
- The pure state representing it is

$$
|\psi\rangle\langle\psi|=(|00\rangle\langle 00|+|00\rangle\langle 11|+|11\rangle\langle 00|+|11\rangle\langle 11|) / 2
$$

- It's matrix is

$$
\left[\begin{array}{cccc}
1 / 2 & 0 & 0 & 1 / 2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 / 2 & 0 & 0 & 1 / 2
\end{array}\right]
$$

- and partial trace is

$$
T_{1}(\rho)=\left[\begin{array}{cc}
1 / 2 & 0 \\
0 & 1 / 2
\end{array}\right]
$$

The Partial Trace of an Entangled State is Mixed

- Let $\psi=(|1\rangle \otimes|1\rangle+|0\rangle \otimes|0\rangle) / \sqrt{2}=(|11\rangle+|00\rangle) / \sqrt{2}$
- The pure state representing it is

$$
|\psi\rangle\langle\psi|=(|00\rangle\langle 00|+|00\rangle\langle 11|+|11\rangle\langle 00|+|11\rangle\langle 11|) / 2
$$

- It's matrix is

$$
\left[\begin{array}{cccc}
1 / 2 & 0 & 0 & 1 / 2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 / 2 & 0 & 0 & 1 / 2
\end{array}\right]
$$

- and partial trace is

$$
T_{1}(\rho)=\left[\begin{array}{cc}
1 / 2 & 0 \\
0 & 1 / 2
\end{array}\right]
$$

- which has rank $=2$ and so is not a pure state. (Pure states have rank 1)

Table of Contents

(1) Quantum Mechanics

- The Density Matrix
- Partial Trace
(2) Quantum Cantor Space
- Coherent Sequences of Density Matrices
- Quantum Σ_{1}^{0}-Classes
(3) Randomness
- Quantum Martin-Löf Randomness
- Computable states can be random

4 Definitions
(5) Quantum Solovay Randomness is equivalent to q-MLR
(6) The set of q-MLR states is convex

- Construction
- Verification
- Now we consider a system of countably infinitely many qubits.
- Now we consider a system of countably infinitely many qubits.
- For each n , let $T_{n}: L_{n} \longrightarrow L_{n-1}$ be the partial trace.
- Now we consider a system of countably infinitely many qubits.
- For each n , let $T_{n}: L_{n} \longrightarrow L_{n-1}$ be the partial trace.
- A sequence of density matrices, $\left(S_{n}\right)_{n \in \omega}$ with $S_{n} \in L_{n}$ is coherent if $T_{n}\left(S_{n}\right)=S_{n-1}$ for all n.
- Now we consider a system of countably infinitely many qubits.
- For each n , let $T_{n}: L_{n} \longrightarrow L_{n-1}$ be the partial trace.
- A sequence of density matrices, $\left(S_{n}\right)_{n \in \omega}$ with $S_{n} \in L_{n}$ is coherent if $T_{n}\left(S_{n}\right)=S_{n-1}$ for all n.
- It models a sequence of infinitely many qubits where for all n, the first n qubits are obtained by ignoring the last qubit from the first $n+1$ qubits.
- Now we consider a system of countably infinitely many qubits.
- For each n , let $T_{n}: L_{n} \longrightarrow L_{n-1}$ be the partial trace.
- A sequence of density matrices, $\left(S_{n}\right)_{n \in \omega}$ with $S_{n} \in L_{n}$ is coherent if $T_{n}\left(S_{n}\right)=S_{n-1}$ for all n.
- It models a sequence of infinitely many qubits where for all n, the first n qubits are obtained by ignoring the last qubit from the first $n+1$ qubits.
- The set of such coherent sequences is called quantum Cantor space.
- Now we consider a system of countably infinitely many qubits.
- For each n , let $T_{n}: L_{n} \longrightarrow L_{n-1}$ be the partial trace.
- A sequence of density matrices, $\left(S_{n}\right)_{n \in \omega}$ with $S_{n} \in L_{n}$ is coherent if $T_{n}\left(S_{n}\right)=S_{n-1}$ for all n.
- It models a sequence of infinitely many qubits where for all n, the first n qubits are obtained by ignoring the last qubit from the first $n+1$ qubits.
- The set of such coherent sequences is called quantum Cantor space.
- A coherent sequence will also be called a state.

Quantum Σ_{1}^{0} Classes

- A Σ_{1}^{0} class $S \subseteq 2^{\omega}$ can be written as

$$
S=\bigcup_{n} \llbracket A_{n} \rrbracket
$$

where
(1) $A_{n} \subseteq 2^{n}$
(2) An index for A_{n} as a computable set can be obtained uniformly in n.
(3) $\llbracket A_{n} \rrbracket \subseteq \llbracket A_{n+1} \rrbracket$

Quantum Σ_{1}^{0} Classes

- A Σ_{1}^{0} class $S \subseteq 2^{\omega}$ can be written as

$$
S=\bigcup_{n} \llbracket A_{n} \rrbracket
$$

where
(1) $A_{n} \subseteq 2^{n}$
(2) An index for A_{n} as a computable set can be obtained uniformly in n.
(3) $\llbracket A_{n} \rrbracket \subseteq \llbracket A_{n+1} \rrbracket$

- Extend this to the quantum setting.

Quantum Σ_{1}^{0} Classes

- A Σ_{1}^{0} class $S \subseteq 2^{\omega}$ can be written as

$$
S=\bigcup_{n} \llbracket A_{n} \rrbracket
$$

where
(1) $A_{n} \subseteq 2^{n}$
(2) An index for A_{n} as a computable set can be obtained uniformly in n.
(3) $\llbracket A_{n} \rrbracket \subseteq \llbracket A_{n+1} \rrbracket$

- Extend this to the quantum setting.
- A Hermitian projection $P \in L_{n}$ is said to be special if it's entries are in $\mathbb{C}_{\text {alg }}$ (roots of \mathbb{Q} polynomials); hence computable.

Definition: $\mathrm{q}-\Sigma_{1}^{0}$ class

$S=\left(P_{n}\right)_{n}$ a sequence of special projections is a $\mathrm{q}-\Sigma_{1}^{0}$ class if
(1) $P_{n} \in L_{n}$
(2) An index for P_{n} as a computable matrix can be obtained uniformly in n.
(3) $\mathrm{rng}\left(P_{n}\right) \subseteq \operatorname{rng}\left(P_{n+1}\right)$.

Definition: $\mathrm{q}-\Sigma_{1}^{0}$ class

$S=\left(P_{n}\right)_{n}$ a sequence of special projections is a $\mathrm{q}-\Sigma_{1}^{0}$ class if
(1) $P_{n} \in L_{n}$
(2) An index for P_{n} as a computable matrix can be obtained uniformly in n.
(3) $\mathrm{rng}\left(P_{n}\right) \subseteq \operatorname{rng}\left(P_{n+1}\right)$.

- Let $\rho=\left(\rho_{n}\right)_{n}$ be a state.

Definition: $\mathrm{q}-\Sigma_{1}^{0}$ class

$S=\left(P_{n}\right)_{n}$ a sequence of special projections is a $\mathrm{q}-\Sigma_{1}^{0}$ class if
(1) $P_{n} \in L_{n}$
(2) An index for P_{n} as a computable matrix can be obtained uniformly in n.
(3) $\mathrm{rng}\left(P_{n}\right) \subseteq \mathrm{rng}\left(P_{n+1}\right)$.

- Let $\rho=\left(\rho_{n}\right)_{n}$ be a state.
- Each $P_{n} \in L_{n}$ is a measurement of the first n qubits.

Definition: $\mathrm{q}-\Sigma_{1}^{0}$ class

$S=\left(P_{n}\right)_{n}$ a sequence of special projections is a $\mathrm{q}-\Sigma_{1}^{0}$ class if
(1) $P_{n} \in L_{n}$
(2) An index for P_{n} as a computable matrix can be obtained uniformly in n.
(3) $\mathrm{rng}\left(P_{n}\right) \subseteq \mathrm{rng}\left(P_{n+1}\right)$.

- Let $\rho=\left(\rho_{n}\right)_{n}$ be a state.
- Each $P_{n} \in L_{n}$ is a measurement of the first n qubits.
- So, S is a sequence of measurements on longer and longer initial segments of a state, ρ.

Definition

$\rho(S):=\lim _{n} \operatorname{Tr}\left(\rho_{n} P_{n}\right)=\sup _{n} \operatorname{Tr}\left(\rho_{n} P_{n}\right)$

- Take the classical Σ_{1}^{0} class S as before.

$$
S=\bigcup_{n} \llbracket A_{n} \rrbracket
$$

The measure of S is $\lim _{n}\left(2^{-n}\left|A_{n}\right|\right)$.

- Take the classical Σ_{1}^{0} class S as before.

$$
S=\bigcup_{n} \llbracket A_{n} \rrbracket
$$

The measure of S is $\lim _{n}\left(2^{-n}\left|A_{n}\right|\right)$.

- Analogously, we define the 'measure' of $G=\left(P_{n}\right)_{n}$, a q- Σ_{1}^{0} to be $\lim _{n} 2^{-n} \operatorname{rank}\left(P_{n}\right)$.
- Take the classical Σ_{1}^{0} class S as before.

$$
S=\bigcup_{n} \llbracket A_{n} \rrbracket
$$

The measure of S is $\lim _{n}\left(2^{-n}\left|A_{n}\right|\right)$.

- Analogously, we define the 'measure' of $G=\left(P_{n}\right)_{n}$, a q- Σ_{1}^{0} to be $\lim _{n} 2^{-n} \operatorname{rank}\left(P_{n}\right)$.
- If we define the state $\tau:=\left(2^{-n} I_{2^{n}}\right)_{n}$, then $\tau(G)=\lim 2^{-n} \operatorname{rank}\left(P_{n}\right)$.
- Take the classical Σ_{1}^{0} class S as before.

$$
S=\bigcup_{n} \llbracket A_{n} \rrbracket
$$

The measure of S is $\lim _{n}\left(2^{-n}\left|A_{n}\right|\right)$.

- Analogously, we define the 'measure' of $G=\left(P_{n}\right)_{n}$, a q- Σ_{1}^{0} to be $\lim _{n} 2^{-n} \operatorname{rank}\left(P_{n}\right)$.
- If we define the state $\tau:=\left(2^{-n} / 2^{n}\right)_{n}$, then $\tau(G)=\lim 2^{-n} \operatorname{rank}\left(P_{n}\right)$.
- With this notion of measure, we can finally define randomness...

Table of Contents

(1) Quantum Mechanics

- The Density Matrix
- Partial Trace
(2) Quantum Cantor Space
- Coherent Sequences of Density Matrices
- Quantum Σ_{1}^{0}-Classes
(3) Randomness
- Quantum Martin-Löf Randomness
- Computable states can be random

4 Definitions
(5) Quantum Solovay Randomness is equivalent to q-MLR
(6) The set of q-MLR states is convex

- Construction
- Verification

Quantum Martin-Löf Randomness

Definition: quantum-Martin-Löf test (q-MLT)

A uniformly computable sequence $\left(G_{m}\right)_{m}$ of $q-\Sigma_{0}^{1}$ classes is a (q-MLT) if $\tau\left(G_{m}\right) \leqslant 2^{-m}$ for each m.

Definition: Passing and Failing a q-MLT at order δ
A state ρ fails a q-MLT $G=\left(G_{m}\right)_{m}$ at order δ if $\rho\left(G_{m}\right)>\delta$ for each m. ρ passes G at order δ if it does not fail G at order δ. I.e, $\exists m, \rho\left(G_{m}\right) \leqslant \delta$.

Definition: Passing a q-MLT

ρ passes a q-MLT $G=\left(G_{m}\right)_{m}$ if it passes G at order δ for all $\delta>0$.
I.e, $\inf _{m} \rho\left(G_{m}\right)=0 . \rho$ is quantum-Martin-Löf Random ($q-M L R$) if it passes each q-MLT.

Computable states can be random

- The state $\tau=\left(2^{-n} / 2^{n}\right)_{n}$ is computable.

Computable states can be random

- The state $\tau=\left(2^{-n} 2_{2^{n}}\right)_{n}$ is computable.
- By definition of a $\mathrm{q}-\mathrm{MLT}, \tau$ is $\mathrm{q}-\mathrm{MLR}$.

Computable states can be random

- The state $\tau=\left(2^{-n} 2_{2^{n}}\right)_{n}$ is computable.
- By definition of a q-MLT, τ is $\mathrm{q}-\mathrm{MLR}$.
- Work in progress: Characterize computable q-MLR states.

Computable states can be random

- The state $\tau=\left(2^{-n} / 2^{n}\right)_{n}$ is computable.
- By definition of a q-MLT, τ is $\mathrm{q}-\mathrm{MLR}$.
- Work in progress: Characterize computable q-MLR states.
- If $\rho_{n} \in L_{n}$ is a density matrix, its eigenvalues $\left(\alpha_{i}\right)_{i \leqslant 2^{n}}$ form a probability distribution. Denote the entropy of this distribution by $H\left(\rho_{n}\right)$.

Computable states can be random

- The state $\tau=\left(2^{-n} / 2^{n}\right)_{n}$ is computable.
- By definition of a q-MLT, τ is $\mathrm{q}-\mathrm{MLR}$.
- Work in progress: Characterize computable q-MLR states.
- If $\rho_{n} \in L_{n}$ is a density matrix, its eigenvalues $\left(\alpha_{i}\right)_{i \leqslant 2^{n}}$ form a probability distribution. Denote the entropy of this distribution by $H\left(\rho_{n}\right)$.
- Each element of τ is uniform and so has maximum entropy.

Computable states can be random

- The state $\tau=\left(2^{-n} / 2^{n}\right)_{n}$ is computable.
- By definition of a q-MLT, τ is $\mathrm{q}-\mathrm{MLR}$.
- Work in progress: Characterize computable q-MLR states.
- If $\rho_{n} \in L_{n}$ is a density matrix, its eigenvalues $\left(\alpha_{i}\right)_{i \leqslant 2^{n}}$ form a probability distribution. Denote the entropy of this distribution by $H\left(\rho_{n}\right)$.
- Each element of τ is uniform and so has maximum entropy.
- Entropy may provide a characterization?

Computable states can be random

- The state $\tau=\left(2^{-n} / 2^{n}\right)_{n}$ is computable.
- By definition of a q-MLT, τ is $\mathrm{q}-\mathrm{MLR}$.
- Work in progress: Characterize computable q-MLR states.
- If $\rho_{n} \in L_{n}$ is a density matrix, its eigenvalues $\left(\alpha_{i}\right)_{i \leqslant 2^{n}}$ form a probability distribution. Denote the entropy of this distribution by $H\left(\rho_{n}\right)$.
- Each element of τ is uniform and so has maximum entropy.
- Entropy may provide a characterization?
- Partial progress: If $\rho=\left(\rho_{n}\right)_{n}$ is computable, then

$$
\exists c \forall n\left[H\left(\rho_{n}\right)>n-c\right] \Rightarrow \rho \text { is } q-M L R \Rightarrow \liminf _{n}\left[H\left(\rho_{n}\right) / n\right]=1
$$

Questions

- Q (Nies and Scholz): Is there a notion of quantum Solovay Randomness ($q-S R$)? If so, is it equivalent to $q-M L R$?

Questions

- Q (Nies and Scholz): Is there a notion of quantum Solovay Randomness ($q-S R$)? If so, is it equivalent to q-MLR?
- We define such a notion and show it to be equivalent to q-MLR.

Questions

- Q (Nies and Scholz): Is there a notion of quantum Solovay Randomness ($q-S R$)? If so, is it equivalent to $q-M L R$?
- We define such a notion and show it to be equivalent to q-MLR.
- Q (Nies and Scholz): Is the set of q-MLR states closed under taking finite convex combinations?

Questions

- Q (Nies and Scholz): Is there a notion of quantum Solovay Randomness ($q-S R$)? If so, is it equivalent to q-MLR?
- We define such a notion and show it to be equivalent to q-MLR.
- Q (Nies and Scholz): Is the set of q-MLR states closed under taking finite convex combinations?
- Yes.

Questions

- Q (Nies and Scholz): Is there a notion of quantum Solovay Randomness ($q-S R$)? If so, is it equivalent to q-MLR?
- We define such a notion and show it to be equivalent to q-MLR.
- Q (Nies and Scholz): Is the set of q-MLR states closed under taking finite convex combinations?
- Yes.
- The proof uses the equivalence of $q-S R$ and $q-M L R$.

Definitions

A Quantum Solovay Test (q-ST)

is a uniformly computable sequence of $\mathrm{q}-\Sigma_{1}^{0}$ sets, $\left(S^{k}\right)_{k \in \omega}$ such that

$$
\sum_{k \in \omega} \tau\left(S^{k}\right)<\infty
$$

Failing and Passing a (q-ST) at level δ

Let $0<\delta<1$. ρ fails the q-ST $\left(S^{k}\right)_{k \in \omega}$ at level δ if $\exists^{\infty} k$ such that $\rho\left(S^{k}\right)>\delta$. Otherwise, ρ passes $\left(S^{k}\right)_{k \in \omega}$ at level δ.

Failing and Passing a (q-ST) at level δ

Let $0<\delta<1$. ρ fails the q-ST $\left(S^{k}\right)_{k \in \omega}$ at level δ if $\exists^{\infty} k$ such that $\rho\left(S^{k}\right)>\delta$. Otherwise, ρ passes $\left(S^{k}\right)_{k \in \omega}$ at level δ.

Quantum Solovay Randomness (q-SR)

ρ passes a q-ST $\left(S^{k}\right)_{k \in \omega}$ if for all δ, ρ passes $\left(S^{k}\right)_{k \in \omega}$ at level $\delta . \rho$ is q-SR if it passes all q-STs.

Theorem (B.)
For all states ρ, ρ is $q-S R$ if and only if ρ is $q-M L R$.

Theorem (B.)
For all states ρ, ρ is $q-S R$ if and only if ρ is $q-M L R$.

- (\Longrightarrow A q-MLT is a q-ST $\quad \square$.

Theorem (B.)

For all states ρ, ρ is $\mathrm{q}-\mathrm{SR}$ if and only if ρ is $\mathrm{q}-\mathrm{MLR}$.

- $(\Longrightarrow) \mathrm{A}$ q-MLT is a q-ST \square.
- ($\Longleftarrow)$ let $\rho=\left(\rho_{n}\right)_{n \in \omega}$ fail a q-ST $\left(S^{k}\right)_{k \in \omega}$ at level δ. Build a q-MLT $\left(G^{m}\right)_{m \in \omega}$, with $G^{m}=\left(G_{n}^{m}\right)_{n \in \omega}$, which ρ fails at level $\delta^{2} / 72$.

Theorem (B.)

For all states ρ, ρ is $\mathrm{q}-\mathrm{SR}$ if and only if ρ is $\mathrm{q}-\mathrm{MLR}$.

- $(\Longrightarrow) \mathrm{A}$ q-MLT is a q-ST \square.
- ($\Longleftarrow)$ let $\rho=\left(\rho_{n}\right)_{n \in \omega}$ fail a q-ST $\left(S^{k}\right)_{k \in \omega}$ at level δ. Build a q-MLT $\left(G^{m}\right)_{m \in \omega}$, with $G^{m}=\left(G_{n}^{m}\right)_{n \in \omega}$, which ρ fails at level $\delta^{2} / 72$.
- WLOG, $S_{n}^{k}=\varnothing$ for $n>k$.

Theorem (B.)

For all states ρ, ρ is $\mathrm{q}-\mathrm{SR}$ if and only if ρ is $\mathrm{q}-\mathrm{MLR}$.

- $(\Longrightarrow) \mathrm{A}$ q-MLT is a q-ST \square.
- ($\Longleftarrow)$ let $\rho=\left(\rho_{n}\right)_{n \in \omega}$ fail a q-ST $\left(S^{k}\right)_{k \in \omega}$ at level δ. Build a q-MLT $\left(G^{m}\right)_{m \in \omega}$, with $G^{m}=\left(G_{n}^{m}\right)_{n \in \omega}$, which ρ fails at level $\delta^{2} / 72$.
- WLOG, $S_{n}^{k}=\varnothing$ for $n>k$.
- Notation:

$$
A_{t}^{m}=\left\{\psi \in \mathbb{C}_{\text {alg }}^{2^{t}}:\|\psi\|=1, \sum_{k \leqslant t} \operatorname{Tr}\left(|\psi\rangle\langle\psi| S_{t}^{k}\right)>\frac{2^{m} \delta}{6}\right\}
$$

for $t, m \in \omega$. We may skip the proof in the interests of time and go straight to the application.

Corollary (B.): The set of q-MLR states is convex

A finite convex combination of $\mathrm{q}-\mathrm{MLR}$ states is q -MLR: If $\left(\rho^{i}\right)_{i<k}$ are $\mathrm{q}-\mathrm{MLR}$ and $\sum_{i<k} \alpha_{i}=1$, then $\rho=\sum_{i<k} \alpha_{i} \rho^{i}$ is q-MLR.

Corollary (B.): The set of $\mathrm{q}-\mathrm{MLR}$ states is convex

A finite convex combination of $\mathrm{q}-\mathrm{MLR}$ states is $\mathrm{q}-\mathrm{MLR}$: If $\left(\rho^{i}\right)_{i<k}$ are $\mathrm{q}-\mathrm{MLR}$ and $\sum_{i<k} \alpha_{i}=1$, then $\rho=\sum_{i<k} \alpha_{i} \rho^{i}$ is $\mathrm{q}-\mathrm{MLR}$.

- Towards a contradiction,

Corollary (B.): The set of q-MLR states is convex

A finite convex combination of $\mathrm{q}-\mathrm{MLR}$ states is q -MLR: If $\left(\rho^{i}\right)_{i<k}$ are $\mathrm{q}-\mathrm{MLR}$ and $\sum_{i<k} \alpha_{i}=1$, then $\rho=\sum_{i<k} \alpha_{i} \rho^{i}$ is $\mathrm{q}-\mathrm{MLR}$.

- Towards a contradiction,
- let there be a q-MLT, $\left(G^{m}\right)_{m \in \omega}$ and a $\delta>0$ such that $\forall m \in \omega$, $\rho\left(G^{m}\right)>\delta$.

Corollary (B.): The set of $\mathrm{q}-\mathrm{MLR}$ states is convex

A finite convex combination of $\mathrm{q}-\mathrm{MLR}$ states is q -MLR: If $\left(\rho^{i}\right)_{i<k}$ are $\mathrm{q}-\mathrm{MLR}$ and $\sum_{i<k} \alpha_{i}=1$, then $\rho=\sum_{i<k} \alpha_{i} \rho^{i}$ is q-MLR.

- Towards a contradiction,
- let there be a q-MLT, $\left(G^{m}\right)_{m \in \omega}$ and a $\delta>0$ such that $\forall m \in \omega$, $\rho\left(G^{m}\right)>\delta$.
- So, $\forall m \in \omega, \exists n$ such that $\operatorname{Tr}\left(\rho_{n} G_{n}^{m}\right)>\delta$ where $\rho_{n}=\sum_{i<k} \alpha_{i} \rho_{n}^{i}$.

Corollary (B.): The set of q-MLR states is convex

A finite convex combination of q-MLR states is q-MLR: If $\left(\rho^{i}\right)_{i<k}$ are $\mathrm{q}-\mathrm{MLR}$ and $\sum_{i<k} \alpha_{i}=1$, then $\rho=\sum_{i<k} \alpha_{i} \rho^{i}$ is q-MLR.

- Towards a contradiction,
- let there be a q-MLT, $\left(G^{m}\right)_{m \in \omega}$ and a $\delta>0$ such that $\forall m \in \omega$, $\rho\left(G^{m}\right)>\delta$.
- So, $\forall m \in \omega, \exists n$ such that $\operatorname{Tr}\left(\rho_{n} G_{n}^{m}\right)>\delta$ where $\rho_{n}=\sum_{i<k} \alpha_{i} \rho_{n}^{i}$.
- I.e, $\forall m \in \omega, \exists n$ such that

$$
\delta<\operatorname{Tr}\left(\sum_{i<k} \alpha_{i} \rho_{n}^{i} G_{n}^{m}\right)=\sum_{i<k} \alpha_{i} \operatorname{Tr}\left(\rho_{n}^{i} G_{n}^{m}\right)
$$

Corollary (B.): The set of q-MLR states is convex

A finite convex combination of q-MLR states is q-MLR: If $\left(\rho^{i}\right)_{i<k}$ are $\mathrm{q}-\mathrm{MLR}$ and $\sum_{i<k} \alpha_{i}=1$, then $\rho=\sum_{i<k} \alpha_{i} \rho^{i}$ is q-MLR.

- Towards a contradiction,
- let there be a q-MLT, $\left(G^{m}\right)_{m \in \omega}$ and a $\delta>0$ such that $\forall m \in \omega$, $\rho\left(G^{m}\right)>\delta$.
- So, $\forall m \in \omega, \exists n$ such that $\operatorname{Tr}\left(\rho_{n} G_{n}^{m}\right)>\delta$ where $\rho_{n}=\sum_{i<k} \alpha_{i} \rho_{n}^{i}$.
- I.e, $\forall m \in \omega, \exists n$ such that

$$
\delta<\operatorname{Tr}\left(\sum_{i<k} \alpha_{i} \rho_{n}^{i} G_{n}^{m}\right)=\sum_{i<k} \alpha_{i} \operatorname{Tr}\left(\rho_{n}^{i} G_{n}^{m}\right) .
$$

- By convexity there must be an i such that $\operatorname{Tr}\left(G_{n}^{m} \rho_{n}^{i}\right)>\delta$
- So, $\forall m \exists n, i$ such that $\operatorname{Tr}\left(\rho_{n}^{i} G_{n}^{m}\right)>\delta$.
- So, $\forall m \exists n, i$ such that $\operatorname{Tr}\left(\rho_{n}^{i} G_{n}^{m}\right)>\delta$.
- There are only finitely many i s.
- So, $\forall m \exists n, i$ such that $\operatorname{Tr}\left(\rho_{n}^{i} G_{n}^{m}\right)>\delta$.
- There are only finitely many i s.
- By pigeonhole, there is an i such that $\exists^{\infty} m$ with $\operatorname{Tr}\left(\rho_{n}^{i} G_{n}^{m}\right)>\delta$, for some n.
- So, $\forall m \exists n, i$ such that $\operatorname{Tr}\left(\rho_{n}^{i} G_{n}^{m}\right)>\delta$.
- There are only finitely many i s.
- By pigeonhole, there is an i such that $\exists^{\infty} m$ with $\operatorname{Tr}\left(\rho_{n}^{i} G_{n}^{m}\right)>\delta$, for some n.
- So, $\exists^{\infty} m$ with $\rho^{i}\left(G^{m}\right)>\delta$.
- So, $\forall m \exists n, i$ such that $\operatorname{Tr}\left(\rho_{n}^{i} G_{n}^{m}\right)>\delta$.
- There are only finitely many i s.
- By pigeonhole, there is an i such that $\exists^{\infty} m$ with $\operatorname{Tr}\left(\rho_{n}^{i} G_{n}^{m}\right)>\delta$, for some n.
- So, $\exists^{\infty} m$ with $\rho^{i}\left(G^{m}\right)>\delta$.
- So, ρ^{i} fails the q-Solovay test $\left(G^{m}\right)_{m \in \omega}$ and hence is not q-MLR by our previous result.

Thank You

Table of Contents

(1) Quantum Mechanics

- The Density Matrix
- Partial Trace
(2) Quantum Cantor Space
- Coherent Sequences of Density Matrices
- Quantum Σ_{1}^{0}-Classes
(3) Randomness
- Quantum Martin-Löf Randomness
- Computable states can be random

4 Definitions
(5) Quantum Solovay Randomness is equivalent to q-MLR
(6) The set of q-MLR states is convex

- Construction
- Verification

Constructing the q-MLT test

- Build $G^{m}=\left(G_{n}^{m}\right)_{n}$: Procedure to build G_{n}^{m}.

Constructing the q-MLT test

- Build $G^{m}=\left(G_{n}^{m}\right)_{n}$: Procedure to build G_{n}^{m}.
- Say we are given C_{n-1}^{m}, a maximal (under set inclusion) orthonormal subset of A_{n-1}^{m}, and $G_{n-1}^{m}=\left\{|\psi\rangle\langle\psi|: \psi \in C_{n-1}^{m}\right\}$. Let

$$
D_{n}^{m}=\left\{|\psi\rangle \otimes|i\rangle: i \in\{1,0\}, \psi \in C_{n-1}^{m}\right\} .
$$

Easy to see that $D_{n}^{m} \subseteq A_{n}^{m}$ since $C_{n-1}^{m} \subseteq A_{n-1}^{m}$.

Constructing the q-MLT test

- Build $G^{m}=\left(G_{n}^{m}\right)_{n}$: Procedure to build G_{n}^{m}.
- Say we are given C_{n-1}^{m}, a maximal (under set inclusion) orthonormal subset of A_{n-1}^{m}, and $G_{n-1}^{m}=\left\{|\psi\rangle\langle\psi|: \psi \in C_{n-1}^{m}\right\}$. Let

$$
D_{n}^{m}=\left\{|\psi\rangle \otimes|i\rangle: i \in\{1,0\}, \psi \in C_{n-1}^{m}\right\}
$$

Easy to see that $D_{n}^{m} \subseteq A_{n}^{m}$ since $C_{n-1}^{m} \subseteq A_{n-1}^{m}$.

- Let C_{n}^{m} be S where S is a maximal orthonormal set such that $D_{n}^{m} \subseteq S \subseteq A_{n}^{m}$.
Let $G_{n}^{m}=\left\{|\psi\rangle\langle\psi|: \psi \in C_{n}^{m}\right\}$. End

Verification

Lemma

For each $m, G^{m}=\left(G_{n}^{m}\right)_{n \in \omega}$ is a quantum- Σ_{1}^{0} set.

Verification

Lemma

For each $m, G^{m}=\left(G_{n}^{m}\right)_{n \in \omega}$ is a quantum- Σ_{1}^{0} set.

- Given C_{n-1}^{m}, we built C_{n}^{m} in stages $t . C_{n, 0}^{m}=D_{n}^{m}$. To compute $C_{n, s}^{m}$ given $C_{n, s-1}^{m}$, check if:

$$
\exists \tau \in A_{n}^{m} \text { such that } \forall \psi \in C_{n, s-1}^{m},\langle\tau \mid \psi\rangle=0 .
$$

This check is decidable as $\operatorname{Th}\left(\mathbb{C}_{a l g}\right)$ is.

Verification

Lemma

For each $m, G^{m}=\left(G_{n}^{m}\right)_{n \in \omega}$ is a quantum- Σ_{1}^{0} set.

- Given C_{n-1}^{m}, we built C_{n}^{m} in stages $t . C_{n, 0}^{m}=D_{n}^{m}$. To compute $C_{n, s}^{m}$ given $C_{n, s-1}^{m}$, check if:

$$
\exists \tau \in A_{n}^{m} \text { such that } \forall \psi \in C_{n, s-1}^{m},\langle\tau \mid \psi\rangle=0 .
$$

This check is decidable as $\operatorname{Th}\left(\mathbb{C}_{\text {alg }}\right)$ is.

- If yes, find a witness τ and set $C_{n, s}^{m}=\{\tau\} \cup C_{n, s-1}^{m}$. If no, set $C_{n}^{m}=C_{n, s-1}^{m}$ and stop. By finite dimensionality, at some stage we must stop.

Verification

Lemma

For each $m, G^{m}=\left(G_{n}^{m}\right)_{n \in \omega}$ is a quantum- Σ_{1}^{0} set.

- Given C_{n-1}^{m}, we built C_{n}^{m} in stages $t . C_{n, 0}^{m}=D_{n}^{m}$. To compute $C_{n, s}^{m}$ given $C_{n, s-1}^{m}$, check if:

$$
\exists \tau \in A_{n}^{m} \text { such that } \forall \psi \in C_{n, s-1}^{m},\langle\tau \mid \psi\rangle=0
$$

This check is decidable as $\operatorname{Th}\left(\mathbb{C}_{a l g}\right)$ is.

- If yes, find a witness τ and set $C_{n, s}^{m}=\{\tau\} \cup C_{n, s-1}^{m}$. If no, set $C_{n}^{m}=C_{n, s-1}^{m}$ and stop. By finite dimensionality, at some stage we must stop.
- So, $\left(G_{n}^{m}\right)_{n \in \omega}$ is a uniformly computable sequence.

Verification

Lemma

For each $m, G^{m}=\left(G_{n}^{m}\right)_{n \in \omega}$ is a quantum- Σ_{1}^{0} set.

- Given C_{n-1}^{m}, we built C_{n}^{m} in stages $t . C_{n, 0}^{m}=D_{n}^{m}$. To compute $C_{n, s}^{m}$ given $C_{n, s-1}^{m}$, check if:

$$
\exists \tau \in A_{n}^{m} \text { such that } \forall \psi \in C_{n, s-1}^{m},\langle\tau \mid \psi\rangle=0
$$

This check is decidable as $\operatorname{Th}\left(\mathbb{C}_{\text {alg }}\right)$ is.

- If yes, find a witness τ and set $C_{n, s}^{m}=\{\tau\} \cup C_{n, s-1}^{m}$. If no, set $C_{n}^{m}=C_{n, s-1}^{m}$ and stop. By finite dimensionality, at some stage we must stop.
- So, $\left(G_{n}^{m}\right)_{n \in \omega}$ is a uniformly computable sequence.
- By construction, range $\left(G_{n-1}^{m} \otimes I_{2}\right) \subset \operatorname{range}\left(G_{n}^{m}\right)$.

Lemma
 $\left(G^{m}\right)_{m \in \omega}$ is a q-MLT.

Lemma
 $\left(G^{m}\right)_{m \in \omega}$ is a q-MLT.

$$
1 \geqslant \sum_{k} \tau\left(S^{k}\right) \geqslant \sum_{k} 2^{-n} \operatorname{Tr}\left(S_{n}^{k}\right),
$$

by definition

Lemma

$\left(G^{m}\right)_{m \in \omega}$ is a q-MLT.

$$
1 \geqslant \sum_{k} \tau\left(S^{k}\right) \geqslant \sum_{k} 2^{-n} \operatorname{Tr}\left(S_{n}^{k}\right),
$$

by definition

- For fixed m, n we have that,

$$
\begin{aligned}
2^{n} & \geqslant \sum_{k} \operatorname{Tr}\left(S_{n}^{k}\right) \\
& \geqslant \sum_{k} \operatorname{Tr}\left(\sum_{\psi \in C_{n}^{m}}|\psi\rangle\langle\psi| S_{n}^{k}\right) \\
& =\sum_{\psi \in C_{n}^{m}} \sum_{k} \operatorname{Tr}\left(|\psi\rangle\langle\psi| S_{n}^{k}\right) \\
& >\left|C_{n}^{m}\right| \frac{2^{m} \delta}{6} \\
& =\operatorname{Tr}\left(G_{n}^{m}\right) \frac{2^{m} \delta}{6} .
\end{aligned}
$$

Lemma:

ρ fails $\left(G^{m}\right)_{m}$ at level $\delta^{2} / 72$. Or, for all $m \in \omega$, there is an n such that

$$
\operatorname{Tr}\left(\rho_{n} G_{n}^{m}\right) \geqslant \frac{\delta^{2}}{72} .
$$

Lemma:

ρ fails $\left(G^{m}\right)_{m}$ at level $\delta^{2} / 72$. Or, for all $m \in \omega$, there is an n such that

$$
\operatorname{Tr}\left(\rho_{n} G_{n}^{m}\right) \geqslant \frac{\delta^{2}}{72} .
$$

- Let m be arbitrary.

Lemma:

ρ fails $\left(G^{m}\right)_{m}$ at level $\delta^{2} / 72$. Or, for all $m \in \omega$, there is an n such that

$$
\operatorname{Tr}\left(\rho_{n} G_{n}^{m}\right) \geqslant \frac{\delta^{2}}{72} .
$$

- Let m be arbitrary.
- Fix a n so that there exist 2^{m} many $k s$ less than n such that $\operatorname{Tr}\left(\rho_{n} S_{n}^{k}\right)>\delta$.

Lemma:

ρ fails $\left(G^{m}\right)_{m}$ at level $\delta^{2} / 72$. Or, for all $m \in \omega$, there is an n such that

$$
\operatorname{Tr}\left(\rho_{n} G_{n}^{m}\right) \geqslant \frac{\delta^{2}}{72} .
$$

- Let m be arbitrary.
- Fix a n so that there exist 2^{m} many $k s$ less than n such that $\operatorname{Tr}\left(\rho_{n} S_{n}^{k}\right)>\delta$.
- Case 1: ρ_{n} is algebraic:

$$
\rho_{n}=\sum_{i \leqslant 2^{n}} \alpha_{i}\left|\psi^{i}\right\rangle\left\langle\psi^{i}\right|
$$

$\sum_{i \leqslant 2^{n}} \alpha_{i}=1$ and for each $i,\left|\psi^{i}\right\rangle \in \mathbb{C}_{a l g}^{2^{n}}$ and $\left\|\psi^{i}\right\| \leqslant 1$.

- Fix $i \leqslant 2^{n}$; let $\psi=\psi^{i}$. Write

$$
\psi=c_{o} \psi_{o}+c_{p} \psi_{p}
$$

where $\psi_{o} \in \operatorname{range}\left(G_{n}^{m}\right)$ and $\psi_{p} \in \operatorname{range}\left(G_{n}^{m}\right)^{\perp}$ are unit vectors, $c_{o}, c_{p} \in \mathbb{C}$ and $\left|c_{0}\right|^{2}+\left|c_{p}\right|^{2}=\|\psi\|^{2} \leqslant 1$.

- Fix $i \leqslant 2^{n}$; let $\psi=\psi^{i}$. Write

$$
\psi=c_{o} \psi_{o}+c_{p} \psi_{p}
$$

where $\psi_{o} \in \operatorname{range}\left(G_{n}^{m}\right)$ and $\psi_{p} \in \operatorname{range}\left(G_{n}^{m}\right)^{\perp}$ are unit vectors, $c_{o}, c_{p} \in \mathbb{C}$ and $\left|c_{0}\right|^{2}+\left|c_{p}\right|^{2}=\|\psi\|^{2} \leqslant 1$.

- For a k, let $S_{n}^{k}=S$. An easy, but long, calculation shows:

$$
\begin{gathered}
\operatorname{Tr}(S|\psi\rangle\langle\psi|) \leqslant \\
\left|c_{o}\right|^{2}\left\langle S \psi_{o} \mid S \psi_{o}\right\rangle+\left|c_{p}\right|^{2}\left\langle S \psi_{p} \mid S \psi_{p}\right\rangle+2\left|c_{o}\right|\left|c_{p}\right|\left|\left\langle S \psi_{p} \mid S \psi_{o}\right\rangle\right|
\end{gathered}
$$

- By Cauchy-Schwarz:

$$
\begin{aligned}
\left|\left\langle S \psi_{p} \mid S \psi_{o}\right\rangle\right| & \leqslant\left\|S \psi_{o}\right\|\left\|S \psi_{p}\right\| \\
& \leqslant\left(\max \left\{\left\|S \psi_{o}\right\|,\left\|S \psi_{p}\right\|\right\}\right)^{2} \\
& \leqslant\left\|S \psi_{o}\right\|^{2}+\left\|S \psi_{p}\right\|^{2} .
\end{aligned}
$$

- By Cauchy-Schwarz:

$$
\begin{aligned}
\left|\left\langle S \psi_{p} \mid S \psi_{o}\right\rangle\right| & \leqslant\left\|S \psi_{o}\right\|\left\|S \psi_{p}\right\| \\
& \leqslant\left(\max \left\{\left\|S \psi_{0}\right\|,\left\|S \psi_{p}\right\|\right\}\right)^{2} \\
& \leqslant\left\|S \psi_{0}\right\|^{2}+\left\|S \psi_{p}\right\|^{2} .
\end{aligned}
$$

- Using this and that $\left|c_{o}\right|,\left|c_{p}\right| \leqslant 1$, $\operatorname{Tr}(S|\psi\rangle\langle\psi|)$
$\leqslant\left|c_{o}\right|^{2}\left\langle S \psi_{o} \mid S \psi_{o}\right\rangle+\left|c_{p}\right|^{2}\left\langle S \psi_{p} \mid S \psi_{p}\right\rangle+2\left|c_{o} \| c_{p}\right|\left(\left\|S \psi_{o}\right\|^{2}+\left\|S \psi_{p}\right\|^{2}\right)$
$\leqslant\left|c_{o}\right|\left\langle S \psi_{o} \mid S \psi_{o}\right\rangle+\left|c_{p}\right|\left\langle S \psi_{p} \mid S \psi_{p}\right\rangle+2\left|c_{o}\right|\left\|S \psi_{o}\right\|^{2}+2\left|c_{p}\right|\left\|S \psi_{p}\right\|^{2}$
$=3\left(\left|c_{o}\right|\left\langle S \psi_{o} \mid S \psi_{o}\right\rangle+\left|c_{p}\right|\left\langle S \psi_{p} \mid S \psi_{p}\right\rangle\right)$

By the choice of n, pick $M \subseteq\{1,2 \ldots n\}$ such that $|M|=2^{m}$ and $\operatorname{Tr}\left(\rho_{n} S_{n}^{k}\right)>\delta$ for each k in M.

$$
\begin{aligned}
2^{m} \delta & <\sum_{k \in M} \operatorname{Tr}\left(\rho_{n} S_{n}^{k}\right) \\
& =\sum_{k \in M} \operatorname{Tr}\left(\sum_{i \leqslant 2^{n}} \alpha_{i}\left|\psi^{i}\right\rangle\left\langle\psi^{i}\right| S_{n}^{k}\right) \\
& =\sum_{k \in M} \sum_{i \leqslant 2^{n}} \alpha_{i} \operatorname{Tr}\left(\left|\psi^{i}\right\rangle\left\langle\psi^{i}\right| S_{n}^{k}\right) \\
& =\sum_{i \leqslant 2^{n}} \alpha_{i} \sum_{k \in M} \operatorname{Tr}\left(\left|\psi^{i}\right\rangle\left\langle\psi^{i}\right| S_{n}^{k}\right) \\
& \leqslant \sum_{i \leqslant 2^{n}} \alpha_{i} \sum_{k \in M} 3\left(\left|c_{o}^{i}\right|\left\langle S_{n}^{k} \psi_{o}^{i} \mid S_{n}^{k} \psi_{o}^{i}\right\rangle+\left|c_{p}^{i}\right|\left\langle S_{n}^{k} \psi_{p}^{i} \mid S_{n}^{k} \psi_{p}^{i}\right\rangle\right)
\end{aligned}
$$

So,

$$
\begin{aligned}
\frac{2^{m} \delta}{3} & <\sum_{i \leqslant 2^{n}} \alpha_{i} \sum_{k \in M}\left(\left|c_{o}^{i}\right|\left\langle S_{n}^{k} \psi_{o}^{i} \mid S_{n}^{k} \psi_{o}^{i}\right\rangle+\left|c_{p}^{i}\right|\left\langle S_{n}^{k} \psi_{p}^{i} \mid S_{n}^{k} \psi_{p}^{i}\right\rangle\right) \\
& =\sum_{i \leqslant 2^{n}} \alpha_{i}\left|c_{o}^{i}\right| \sum_{k \in M}\left\langle S_{n}^{k} \psi_{o}^{i} \mid S_{n}^{k} \psi_{o}^{i}\right\rangle+\sum_{i \leqslant 2^{n}} \alpha_{i}\left|c_{p}^{i}\right| \sum_{k \in M}\left\langle S_{n}^{k} \psi_{p}^{i} \mid S_{n}^{k} \psi_{p}^{i}\right\rangle
\end{aligned}
$$

So,

$$
\begin{aligned}
\frac{2^{m} \delta}{3} & <\sum_{i \leqslant 2^{n}} \alpha_{i} \sum_{k \in M}\left(\left|c_{o}^{i}\right|\left\langle S_{n}^{k} \psi_{o}^{i} \mid S_{n}^{k} \psi_{o}^{i}\right\rangle+\left|c_{p}^{i}\right|\left\langle S_{n}^{k} \psi_{p}^{i} \mid S_{n}^{k} \psi_{p}^{i}\right\rangle\right) \\
& =\sum_{i \leqslant 2^{n}} \alpha_{i}\left|c_{o}^{i}\right| \sum_{k \in M}\left\langle S_{n}^{k} \psi_{o}^{i} \mid S_{n}^{k} \psi_{o}^{i}\right\rangle+\sum_{i \leqslant 2^{n}} \alpha_{i}\left|c_{p}^{i}\right| \sum_{k \in M}\left\langle S_{n}^{k} \psi_{p}^{i} \mid S_{n}^{k} \psi_{p}^{i}\right\rangle
\end{aligned}
$$

- We now bound the second sum on the right-hand side.

So,

$$
\begin{aligned}
\frac{2^{m} \delta}{3} & <\sum_{i \leqslant 2^{n}} \alpha_{i} \sum_{k \in M}\left(\left|c_{o}^{i}\right|\left\langle S_{n}^{k} \psi_{o}^{i} \mid S_{n}^{k} \psi_{o}^{i}\right\rangle+\left|c_{p}^{i}\right|\left\langle S_{n}^{k} \psi_{p}^{i} \mid S_{n}^{k} \psi_{p}^{i}\right\rangle\right) \\
& =\sum_{i \leqslant 2^{n}} \alpha_{i}\left|c_{o}^{i}\right| \sum_{k \in M}\left\langle S_{n}^{k} \psi_{o}^{i} \mid S_{n}^{k} \psi_{o}^{i}\right\rangle+\sum_{i \leqslant 2^{n}} \alpha_{i}\left|c_{p}^{i}\right| \sum_{k \in M}\left\langle S_{n}^{k} \psi_{p}^{i} \mid S_{n}^{k} \psi_{p}^{i}\right\rangle
\end{aligned}
$$

- We now bound the second sum on the right-hand side.
- Make a key use of the maximality of the orthonormal subset chosen during the construction.
- $\forall i, \psi_{p}^{i} \in \operatorname{range}\left(G_{n}^{m}\right)^{\perp} \cap \mathbb{C}_{\text {alg }}^{2^{n}}$.
- $\forall i, \psi_{p}^{i} \in \operatorname{range}\left(G_{n}^{m}\right)^{\perp} \cap \mathbb{C}_{\text {alg }}^{2^{n}}$.
- Hence, ψ_{p}^{i} is perpendicular to each element of C_{n}^{m}.
- $\forall i, \psi_{p}^{i} \in \operatorname{range}\left(G_{n}^{m}\right)^{\perp} \cap \mathbb{C}_{\text {alg }}^{2^{n}}$.
- Hence, ψ_{p}^{i} is perpendicular to each element of C_{n}^{m}.
- If $\psi_{p}^{i} \in A_{n}^{m}$, then $\left\{\psi_{p}^{i}\right\} \cup C_{n}^{m}$ is a orthonormal subset of A_{n}^{m} strictly containing C_{n}^{m}, contradicting the maximality of C_{n}^{m}.
- $\forall i, \psi_{p}^{i} \in \operatorname{range}\left(G_{n}^{m}\right)^{\perp} \cap \mathbb{C}_{\text {alg }}^{2^{n}}$.
- Hence, ψ_{p}^{i} is perpendicular to each element of C_{n}^{m}.
- If $\psi_{p}^{i} \in A_{n}^{m}$, then $\left\{\psi_{p}^{i}\right\} \cup C_{n}^{m}$ is a orthonormal subset of A_{n}^{m} strictly containing C_{n}^{m}, contradicting the maximality of C_{n}^{m}.
- So, $\psi_{p}^{i} \notin A_{n}^{m}$ for each i.
- $\forall i, \psi_{p}^{i} \in \operatorname{range}\left(G_{n}^{m}\right)^{\perp} \cap \mathbb{C}_{\text {alg }}^{2^{n}}$.
- Hence, ψ_{p}^{i} is perpendicular to each element of C_{n}^{m}.
- If $\psi_{p}^{i} \in A_{n}^{m}$, then $\left\{\psi_{p}^{i}\right\} \cup C_{n}^{m}$ is a orthonormal subset of A_{n}^{m} strictly containing C_{n}^{m}, contradicting the maximality of C_{n}^{m}.
- So, $\psi_{p}^{i} \notin A_{n}^{m}$ for each i.
- But, $\psi_{p}^{i} \in \mathbb{C}_{a l g}^{2^{n}}$ and $\left\|\psi_{p}^{i}\right\|=1$. So the only way $\psi_{p}^{i} \notin A_{n}^{m}$ is if
- $\forall i, \psi_{p}^{i} \in \operatorname{range}\left(G_{n}^{m}\right)^{\perp} \cap \mathbb{C}_{\text {alg }}^{2^{n}}$.
- Hence, ψ_{p}^{i} is perpendicular to each element of C_{n}^{m}.
- If $\psi_{p}^{i} \in A_{n}^{m}$, then $\left\{\psi_{p}^{i}\right\} \cup C_{n}^{m}$ is a orthonormal subset of A_{n}^{m} strictly containing C_{n}^{m}, contradicting the maximality of C_{n}^{m}.
- So, $\psi_{p}^{i} \notin A_{n}^{m}$ for each i.
- But, $\psi_{p}^{i} \in \mathbb{C}_{a l g}^{2^{n}}$ and $\left\|\psi_{p}^{i}\right\|=1$. So the only way $\psi_{p}^{i} \notin A_{n}^{m}$ is if

$$
\sum_{k \leqslant n} \operatorname{Tr}\left(\left|\psi_{p}^{i}\right\rangle\left\langle\psi_{p}^{i}\right| S_{n}^{k}\right) \leqslant \frac{2^{m} \delta}{6}
$$

Recall

We are trying to bound from above the second term on the right hand side of

$$
\frac{2^{m} \delta}{3}<\sum_{i \leqslant 2^{n}} \alpha_{i}\left|c_{o}^{i}\right| \sum_{k \in M}\left\langle S_{n}^{k} \psi_{o}^{i} \mid S_{n}^{k} \psi_{o}^{i}\right\rangle+\sum_{i \leqslant 2^{n}} \alpha_{i}\left|c_{p}^{i}\right| \sum_{k \in M}\left\langle S_{n}^{k} \psi_{p}^{i} \mid S_{n}^{k} \psi_{p}^{i}\right\rangle
$$

- So, bound the sum as follows:

$$
\begin{gathered}
\sum_{i \leqslant 2^{n}} \alpha_{i}\left|c_{p}^{i}\right| \sum_{k \in M}\left\langle S_{n}^{k} \psi_{p}^{i} \mid S_{n}^{k} \psi_{p}^{i}\right\rangle \\
\leqslant \sum_{i \leqslant 2^{n}} \alpha_{i}\left|c_{p}^{i}\right| \frac{2^{m} \delta}{6}<\sum_{i \leqslant 2^{n}} \alpha_{i} \frac{2^{m} \delta}{6} \leqslant \frac{2^{m} \delta}{6}
\end{gathered}
$$

- So, bound the sum as follows:

$$
\begin{gathered}
\sum_{i \leqslant 2^{n}} \alpha_{i}\left|c_{p}^{i}\right| \sum_{k \in M}\left\langle S_{n}^{k} \psi_{p}^{i} \mid S_{n}^{k} \psi_{p}^{i}\right\rangle \\
\leqslant \sum_{i \leqslant 2^{n}} \alpha_{i}\left|c_{p}^{i}\right| \frac{2^{m} \delta}{6}<\sum_{i \leqslant 2^{n}} \alpha_{i} \frac{2^{m} \delta}{6} \leqslant \frac{2^{m} \delta}{6}
\end{gathered}
$$

- This means:

$$
\sum_{i \leqslant 2^{n}} \alpha_{i}\left|c_{o}^{i}\right| \sum_{k \in M}\left\langle S_{n}^{k} \psi_{o}^{i} \mid S_{n}^{k} \psi_{o}^{i}\right\rangle>\frac{2^{m} \delta}{6}
$$

- $\left|\left\langle S_{n}^{k} \psi_{o}^{i} \mid S_{n}^{k} \psi_{o}^{i}\right\rangle\right| \leqslant 1$ and $|M|=2^{m}$
- $\left|\left\langle S_{n}^{k} \psi_{o}^{i} \mid S_{n}^{k} \psi_{o}^{i}\right\rangle\right| \leqslant 1$ and $|M|=2^{m}$
- So, cancel the 2^{m} s to get:

$$
\frac{\delta}{6}<\sum_{i \leqslant 2^{n}} \alpha_{i}\left|c_{o}^{i}\right|
$$

- $\left|\left\langle S_{n}^{k} \psi_{o}^{i} \mid S_{n}^{k} \psi_{o}^{i}\right\rangle\right| \leqslant 1$ and $|M|=2^{m}$
- So, cancel the 2^{m} s to get:

$$
\frac{\delta}{6}<\sum_{i \leqslant 2^{n}} \alpha_{i}\left|c_{o}^{i}\right|
$$

- As $\sum_{i \leqslant 2^{n}} \alpha_{i}=1$, by Jensen's inequality:

$$
\frac{\delta^{2}}{36}<\left(\sum_{i \leqslant 2^{n}} \alpha_{i}\left|c_{o}^{i}\right|\right)^{2} \leqslant \sum_{i \leqslant 2^{n}} \alpha_{i}\left|c_{o}^{i}\right|^{2}
$$

- $\left|\left\langle S_{n}^{k} \psi_{o}^{i} \mid S_{n}^{k} \psi_{o}^{i}\right\rangle\right| \leqslant 1$ and $|M|=2^{m}$
- So, cancel the 2^{m} s to get:

$$
\frac{\delta}{6}<\sum_{i \leqslant 2^{n}} \alpha_{i}\left|c_{o}^{i}\right|
$$

- As $\sum_{i \leqslant 2^{n}} \alpha_{i}=1$, by Jensen's inequality:

$$
\frac{\delta^{2}}{36}<\left(\sum_{i \leqslant 2^{n}} \alpha_{i}\left|c_{o}^{i}\right|\right)^{2} \leqslant \sum_{i \leqslant 2^{n}} \alpha_{i}\left|c_{o}^{i}\right|^{2}
$$

- Finally, it is easy to see that

$$
\begin{aligned}
\operatorname{Tr}\left(\rho_{n} G_{n}^{m}\right) & =\sum_{i \leqslant 2^{n}} \alpha_{i} \operatorname{Tr}\left(\left|c_{o}^{i} \psi_{o}^{i}\right\rangle\left\langle c_{o}^{i} \psi_{o}^{i}\right|\right) \\
& =\sum_{i \leqslant 2^{n}} \alpha_{i}\left|c_{o}^{i}\right|^{2}>\frac{\delta^{2}}{36}
\end{aligned}
$$

- Case 2: ρ_{n} is not expressible as a convex sum of algebraic projections.
- Since $\left\{\psi \in \mathbb{C}_{\text {alg }}^{2^{n}}:\|\psi\| \leqslant 1\right\}$ is dense in the closed unit ball in $\mathbb{C}^{2^{n}}$, using case 1 , we see that $\operatorname{Tr}\left(\rho_{n} G_{n}^{m}\right)>\frac{\delta^{2}}{72}$

