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Reference: ‘Martin-L6f random quantum states’, by Nies and Scholz. | will
first discuss this paper and then outline some answers to the questions
posed in it.
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It's dimension is the number of classical states it is a superposition of.

A measurement of the system collapses it into one of the classical
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@ Let us formalize this.

@ We represent a n-dimensional system by a matrix 1¢* where 1) € C"
is a unit column vector (¢* is the complex conjugate transpose of ).
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All the quantum physics needed for this talk....in one slide.

First, a sketch. We will formalize it soon.
A quantum mechanical system is a superposition of ‘classical’ states.

It's dimension is the number of classical states it is a superposition of.

A measurement of the system collapses it into one of the classical
states. Measuring a classical state does not cause any collapse. Hence
they are called ‘classical’.

o Let us formalize this.

@ We represent a n-dimensional system by a matrix 1¢* where 1) € C"
is a unit column vector (¢* is the complex conjugate transpose of ).

e Fix a orthonormal basis by, .., b, of C". The b;b¥ s will be the
classical states.

@ A measurement is represented by a matrix H with eigenvectors

by, .., b, with eigenvalues equalling 0 or 1. So, H is a Hermitian
projection.
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Okay, | tried but | need two.
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@ Measuring H on 1)* causes the system to collapse to one of the
classical states b;b} and the outcome of the measurement is e; where
Hb; = e;b; (i.e, the eigenvalue corresponding to b;.)
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@ Measuring H on 1)* causes the system to collapse to one of the
classical states b;b} and the outcome of the measurement is e; where
Hb; = e;b; (i.e, the eigenvalue corresponding to b;.)

@ The probability of collapsing 19* to b;b} on measurement is

(b, bi) 2.
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Okay, | tried but | need two.

@ Measuring H on 1)* causes the system to collapse to one of the
classical states b;b} and the outcome of the measurement is e; where
Hb; = e;b; (i.e, the eigenvalue corresponding to b;.)

@ The probability of collapsing 19* to b;b} on measurement is
|<11Z)7 bi>|2'

@ By orthonormality, we see that measurements do not collapse classical
states.

@ One can check that the expected value of measuring H on 19)* is
Trace(HYy™).
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@ A qubit is a 2-dimensional system.
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@ A qubit is a 2-dimensional system.
@ Bra-Ket notation: denote a column vector v by |v) and v* by (v|.

@ Let H be a Hermitian operator on C? with eigenpairs (V4,1) and
(Vo,0) with V4 and WV, forming a orthonormal basis.

e Denote V, Vi by [0) and |1).
@ So, (C?)®" := H, has a orthonormal basis comprised of elements of
the form: Fix a o € 2". The basis vector given by this o is

0(0)) ®[0(1)) @ .. ®|an—1> ®]a >:= >

i<n
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A qubit is a 2-dimensional system.
Bra-Ket notation: denote a column vector v by |v) and v* by (v|.

Let H be a Hermitian operator on C? with eigenpairs (V1,1) and
(Vo,0) with V4 and WV, forming a orthonormal basis.

@ Denote Vp, V4 by |0> and |1>

So, (C2)®" := H, has a orthonormal basis comprised of elements of
the form: Fix a o € 2". The basis vector given by this o is

0(0)) ®[0(1)) @ .. ®|an—1> ®]a >:= >

i<n

If |40) € Hp is a unit vector, the matrix |1)(¢| is said to be a pure
state.
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A qubit is a 2-dimensional system.

Bra-Ket notation: denote a column vector v by |v) and v* by (v|.

Let H be a Hermitian operator on C? with eigenpairs (V1,1) and
(Vo,0) with V4 and WV, forming a orthonormal basis.

Denote Vg, V4 by [0) and [1).
So, (C2)®" := H, has a orthonormal basis comprised of elements of
the form: Fix a o € 2". The basis vector given by this o is

0(0)) ®[0(1)) @ .. ®|an—1> ®]a >:= >

i<n
o If [¢) € Hy is a unit vector, the matrix [¢)(4)| is said to be a pure
state.
e A mixed state is a convex combination of 2 or more pure states.
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A qubit is a 2-dimensional system.
Bra-Ket notation: denote a column vector v by |v) and v* by (v|.

@ Let H be a Hermitian operator on C? with eigenpairs (V4,1) and

(Vo,0) with V4 and WV, forming a orthonormal basis.

@ Denote Vp, V4 by |0> and |1>

So, (C2)®" := H, has a orthonormal basis comprised of elements of
the form: Fix a o € 2". The basis vector given by this o is

0(0)) ®[0(1)) @ .. ®|an—1> ®]a >:= >

i<n

If |40) € Hp is a unit vector, the matrix |1)(¢| is said to be a pure
state.

A mixed state is a convex combination of 2 or more pure states.

@ A pure state is a single quantum system while a mixed state is a

probabilistic mixture of pure states.
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The Density Matrix

@ The mixed and pure states are called density matrices.

@ In fact, any Hermitian, positive semidefinite matrix with trace = 1
gives a state and is a density matrix.

e If a Hermitian p on H, has Trace(p)=1, then it has a complete
orthonormal set of eigenvectors (1);)j<2n. If the eigenpairs are (o, 1),
then

p= 2, aili)(vil (1)

i<2n

The sum is convex as 1=Tr(p)=>; a;. So, p gives a state.
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The Density Matrix

@ The mixed and pure states are called density matrices.

@ In fact, any Hermitian, positive semidefinite matrix with trace = 1
gives a state and is a density matrix.

e If a Hermitian p on H, has Trace(p)=1, then it has a complete
orthonormal set of eigenvectors (1);)j<2n. If the eigenpairs are (o, 1),
then

p=> ailti) (il (1)
i<2n
The sum is convex as 1=Tr(p)=>; a;. So, p gives a state.

@ The density matrix p = > _o» a;]w;><¢;] gives a system which is in
|1 ) (1i| with probability c;
e Notation: L(H,) denotes the space of 2" by 2" matrices.
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@ So far we have seen: a system of n qubits is modeled by a density
matrix in L(Hp).
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So far we have seen: a system of n qubits is modeled by a density
matrix in L(Hp).

A system in H,.1 = H, ® H; which is a composite of systems

o € L(Hy) and 7 € L(H;) is described by p = 0 ® 7 € L(H,,) ® L(Hy).

So, a composite system is a product state (pure tensor).

The pure tensors do not exhaust the set of density matrices in
L(Hpt1)-
Take a p € L(Hp+1) which is not a pure tensor.

It is not a composite of states in L(H,) and L(Hs).

Such a p is called entangled.
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Partial Trace

e Given p € L,11 we want to find the state given by ignoring the last
qubit.
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Partial Trace

e Given p € L,11 we want to find the state given by ignoring the last
qubit.

@ What does ‘ignoring’ mean?

@ |t means we need a 7 € L, which describes measurements of the first
n qubits of p.
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Partial Trace

e Given p € L,11 we want to find the state given by ignoring the last
qubit.

@ What does ‘ignoring’ mean?

@ |t means we need a 7 € L, which describes measurements of the first
n qubits of p.
o l.e, we need a 7 such that for any hermitian O € L,,,

Tr(10) = Tr(p(O®1)).
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e Given p € L,11 we want to find the state given by ignoring the last
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@ What does ‘ignoring’ mean?

@ |t means we need a 7 € L, which describes measurements of the first
n qubits of p.
o l.e, we need a 7 such that for any hermitian O € L,,,

Tr(10) = Tr(p(O®1)).

o (Recall: The expectation of measuring O on ¢ is Tr(¢0O).)
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Partial Trace

e Given p € L,11 we want to find the state given by ignoring the last
qubit.

@ What does ‘ignoring’ mean?
@ |t means we need a 7 € L, which describes measurements of the first
n qubits of p.

o l.e, we need a 7 such that for any hermitian O € L,,,

Tr(10) = Tr(p(O®1)).

(Recall: The expectation of measuring O on ¢ is Tr(¢0).)
If p=A®oc fora e l, and o € L; then,

Tr(p(O® 1)) = Tr((AO®al) = Tr(A\O) Tr(o) = Tr(A\O)

So, 7 = A works.

o If p is entangled, the choice of 7 is not so obvious
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e Denote L(H,) by L,. Define
Tiilppr — Ly

by Ti(A® B) := Ax Tr(B) for any A€ L, B € L1 and then extending
it linearly.
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e Denote L(H,) by L,. Define
Ti:Llny1r — Ly

by Ti(A® B) := Ax Tr(B) for any A€ L, B € L1 and then extending
it linearly.

@ This defines Ty since if p € L, 1, it is a finite sum of the form
p=>0i(A®B)

for scalars «j, Aj € L, and B; € L;.(After modding out by the usual =)
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e Denote L(H,) by L,. Define
Ti:Llny1r — Ly

by Ti(A® B) := Ax Tr(B) for any A€ L, B € L1 and then extending
it linearly.

@ This defines Ty since if p € L, 1, it is a finite sum of the form
p=>0i(A®B)

for scalars «j, Aj € L, and B; € L;.(After modding out by the usual =)
o It turns out that T;(p) is the required 7
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@ There is a arrangement of the bases of H,, which makes computing the
partial trace easy.
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@ There is a arrangement of the bases of H,, which makes computing the
partial trace easy.

@ Details (skip)
Recall that H, has a orthonormal basis comprised of elements of the

form
X o (i) :=|o) fora o€ 2"
i<n

Order them as follows: given o < 7, define

Q o0<ol
Q ol1>10
@ ogi<rTifori=0,1

For Ae L(H,), B € L(Hy),

Abyy Abo1]| . boo  bo1
® [Ablo Abll] ! [blo bll}
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Finding the Partial Trace of an Operator from it's Matrix

o letpelp
_|A B
P=lc b

be with each block in L,
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Finding the Partial Trace of an Operator from it's Matrix

o letpelp
_|A B
P=lc b

@ By the arrangement of the basis elements, we see that

be with each block in L,

Tl(p) =A+D
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The Partial Trace of an Entangled State is Mixed

o Let ¥ = (|1)®|1) + [0) ®[0))/v/2 = (|11) + |00))/+/2
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The Partial Trace of an Entangled State is Mixed

o Let ¥ = (|1)®|1) + [0) ®[0))/v/2 = (|11) + |00))/+/2

@ The pure state representing it is

[) (] = (100)(00] +[00)(11] + [11)¢00] + [11){11])/2
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The Partial Trace of an Entangled State is Mixed

o Let ¥ = (|1)®|1) + [0) ®[0))/v/2 = (|11) + |00))/+/2

@ The pure state representing it is

[) (] = (100)(00] +[00)(11] + [11)¢00] + [11){11])/2

o It's matrix is

1/2 0 0 1/2
0 00 O
0 00 0
1/2 0 0 1/2

@ and partial trace is

Talp) = [léz 132]
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The Partial Trace of an Entangled State is Mixed

o Let ¥ = (|1)®|1) + [0) ®[0))/v/2 = (|11) + |00))/+/2

@ The pure state representing it is

[) (] = (100)(00] +[00)(11] + [11)¢00] + [11){11])/2

o It's matrix is

1/2 0 0 1/2
0 00 O
0 00 0
1/2 0 0 1/2

and partial trace is

Talp) = [léz 132]

which has rank = 2 and so is not a pure state. (Pure states have rank

1)
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@ Now we consider a system of countably infinitely many qubits.
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Now we consider a system of countably infinitely many qubits.

For each n, let T, : L, —> L,_1 be the partial trace.

A sequence of density matrices, (Sp)new With S, € L, is coherent if
Tn(Sn) = Sp—1 for all n.

It models a sequence of infinitely many qubits where for all n, the first
n qubits are obtained by ignoring the last qubit from the first n + 1
qubits.
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@ Now we consider a system of countably infinitely many qubits.

o Foreachn,let T,: L, — L,_1 be the partial trace.

@ A sequence of density matrices, (S,)new With S, € L, is coherent if
Tn(Sn) = Sp—1 for all n.

@ It models a sequence of infinitely many qubits where for all n, the first
n qubits are obtained by ignoring the last qubit from the first n + 1
qubits.

@ The set of such coherent sequences is called quantum Cantor space.

@ A coherent sequence will also be called a state.
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Quantum Zfl’ Classes

o A X9 class S < 2¢ can be written as

S = U[[An]]

where
Q A, c2"
@ An index for A, as a computable set can be obtained uniformly in n.

9 [[An]] = [[An+1]]
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Quantum Zfl’ Classes

o A X9 class S < 2¢ can be written as

S = U[[An]]

where
Q A, c2"
@ An index for A, as a computable set can be obtained uniformly in n.
9 [[An]] < [[AI'IJrl]]
@ Extend this to the quantum setting.
@ A Hermitian projection P € L, is said to be special if it's entries are in
Cag (roots of Q polynomials); hence computable.
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Definition: g-X9 class

S = (Py)n a sequence of special projections is a g-X9 class if
o O P,elL,

@ An index for P, as a computable matrix can be obtained uniformly in n.

e rng(Pn) grng(PnJrl)'
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o O P,elL,

@ An index for P, as a computable matrix can be obtained uniformly in n.

e rng(Pn) grng(PnJrl)'

o Let p = (pn)n be a state.

Tejas Bhojraj (UW-Madison) Quantum Solovay randomness Waterloo, June 2018 16 / 41



Definition: g-X9 class

S = (Py)n a sequence of special projections is a g-X9 class if
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@ An index for P, as a computable matrix can be obtained uniformly in n.
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o Let p = (pn)n be a state.

@ Each P, € L, is a measurement of the first n qubits.
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Definition: g-X9 class

S = (Py)n a sequence of special projections is a g-X9 class if
o O P,elL,

@ An index for P, as a computable matrix can be obtained uniformly in n.

e rng(P,,) grng(PnJrl)'

o Let p = (pn)n be a state.
@ Each P, € L, is a measurement of the first n qubits.

@ So, S is a sequence of measurements on longer and longer initial
segments of a state, p.

Definition

p(S) = lim, Tr(ppPn) = supn Tr(pnPh)

Tejas Bhojraj (UW-Madison) Quantum Solovay randomness Waterloo, June 2018 16 / 41



o Take the classical X9 class S as before.

5= U[[An]]

The measure of S is lim,(27"|Anl).
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o Take the classical X9 class S as before.
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The measure of S is lim,(27"|Anl).

@ Analogously, we define the ‘measure’ of G = (Pp),, a q—Z? to be
limp2~ "rank(Pp).
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o Take the classical X9 class S as before.
5= U[[An]]

The measure of S is lim,(27"|Anl).

@ Analogously, we define the ‘measure’ of G = (Pp),, a q—Z? to be
limp2~ "rank(Pp).

o If we define the state 7 := (27 "kn),, then 7(G) = lim,2~ "rank(P,,).
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o Take the classical X9 class S as before.

5= U[[An]]

The measure of S is lim,(27"|Anl).

@ Analogously, we define the ‘measure’ of G = (Pp),, a q—Z? to be
limp2~ "rank(Pp).

o If we define the state 7 := (27 "kn),, then 7(G) = lim,2~ "rank(P,,).

@ With this notion of measure, we can finally define randomness...
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Quantum Martin-Lof Randomness

Definition: quantum-Martin-Lof test (q-MLT)

A uniformly computable sequence (Gy,)m of g — X3 classes is a (g-MLT) if
7(Gm) < 27™ for each m.

v

Definition: Passing and Failing a g-MLT at order

A state p fails a g-MLT G = (Gp)m at order ¢ if p(Gp,) > 6 for each m. p
passes G at order ¢ if it does not fail G at order 4. l.e, Am, p(Gp,) < 0.

Definition: Passing a g-MLT

p passes a -MLT G = (Gp)m if it passes G at order § for all § > 0.
l.e, infmp(Gm) = 0. p is quantum-Martin-Léf Random (q-MLR) if it passes
each g-MLT.
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Computable states can be random

@ The state 7 = (27 "), is computable.
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Computable states can be random

@ The state 7 = (27 "), is computable.
e By definition of a q-MLT, 7 is g-MLR.
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Computable states can be random

@ The state 7 = (27"hpn), is computable.
e By definition of a q-MLT, 7 is g-MLR.
@ Work in progress: Characterize computable g-MLR states.
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@ Work in progress: Characterize computable g-MLR states.

e If p, € L, is a density matrix, its eigenvalues («;)i<on form a
probability distribution. Denote the entropy of this distribution by
H(pn).
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Computable states can be random

@ The state 7 = (27"hpn), is computable.

@ By definition of a g-MLT, 7 is g-MLR.

@ Work in progress: Characterize computable g-MLR states.

e If p, € L, is a density matrix, its eigenvalues («;)i<on form a
probability distribution. Denote the entropy of this distribution by
H(pn).

e Each element of 7 is uniform and so has maximum entropy.
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By definition of a g-MLT, 7 is g-MLR.
Work in progress: Characterize computable g-MLR states.

If pn € Ly, is a density matrix, its eigenvalues («;);<on form a
probability distribution. Denote the entropy of this distribution by
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Computable states can be random

The state 7 = (27 "), is computable.
By definition of a g-MLT, 7 is g-MLR.
Work in progress: Characterize computable g-MLR states.

If pn € Ly, is a density matrix, its eigenvalues («;);<on form a
probability distribution. Denote the entropy of this distribution by
H(pn).

e Each element of 7 is uniform and so has maximum entropy.

e Entropy may provide a characterization?

e Partial progress: If p = (pn)n is computable, then

3cVn[H(pn) > n—c] = pis g-MLR = liminf,[H(pp)/n] = 1.
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@ Q (Nies and Scholz): Is there a notion of quantum Solovay
Randomness (g-SR)? If so, is it equivalent to q-MLR?
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@ Q (Nies and Scholz): Is there a notion of quantum Solovay
Randomness (g-SR)? If so, is it equivalent to q-MLR?

@ We define such a notion and show it to be equivalent to g-MLR.
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@ We define such a notion and show it to be equivalent to g-MLR.

@ Q (Nies and Scholz): Is the set of q-MLR states closed under taking
finite convex combinations?
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@ Q (Nies and Scholz): Is there a notion of quantum Solovay
Randomness (g-SR)? If so, is it equivalent to q-MLR?

@ We define such a notion and show it to be equivalent to g-MLR.

@ Q (Nies and Scholz): Is the set of q-MLR states closed under taking
finite convex combinations?

@ Yes.
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@ Q (Nies and Scholz): Is there a notion of quantum Solovay
Randomness (g-SR)? If so, is it equivalent to q-MLR?

@ We define such a notion and show it to be equivalent to g-MLR.

@ Q (Nies and Scholz): Is the set of q-MLR states closed under taking
finite convex combinations?

@ Yes.

@ The proof uses the equivalence of g-SR and g-MLR.
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A Quantum Solovay Test (g-ST)

is a uniformly computable sequence of g-X9 sets, (S¥)xe. such that

Z 7(5%) < o0

kew

Tejas Bhojraj (UW-Madison) Quantum Solovay randomness Waterloo, June 2018



Failing and Passing a (q-ST) at level ¢

Let 0 < & < 1. p fails the g-ST (S¥)xew at level 6 if 3%k such that
p(S¥) > 6. Otherwise, p passes (5¥)iew at level 6.
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Failing and Passing a (g-ST) at level §

Let 0 < & < 1. p fails the g-ST (S¥)xew at level 6 if 3%k such that
p(S¥) > 6. Otherwise, p passes (5¥)iew at level 6.

Quantum Solovay Randomness (g-SR)

p passes a -ST (SK) ey, if for all 4, p passes (5¥)xew at level 6. p is g-SR
if it passes all g-STs.
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Theorem (B.)

For all states p, p is g-SR if and only if p is g-MLR.
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Theorem (B.)
For all states p, p is g-SR if and only if p is g-MLR.

o (=)Aqg-MLT isag-ST [
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Theorem (B.)
For all states p, p is g-SR if and only if p is g-MLR.

(=)Ag-MLT isaq-ST [
(=) let p = (pn)new fail @ g-ST (5¥)xew at level 6. Build a g-MLT
(G™) mew, With G™ = (G/™) pew,, Which p fails at level 62/72.
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Theorem (B.)
For all states p, p is g-SR if and only if p is g-MLR.

o (=)Aqg-MLT isag-ST [
o (=) let p = (pn)new fail a g-ST (5¥)kew at level 5. Build a g-MLT
(G™) mew, With G™ = (G/™) pew,, Which p fails at level 62/72.

n

e WLOG, Sk = & for n > k.
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Theorem (B.)
For all states p, p is g-SR if and only if p is g-MLR.

o (=)Aqg-MLT isag-ST [

o (=) let p = (pn)new fail a g-ST (5¥)kew at level 5. Build a g-MLT
(G™) mew, With G™ = (G/™) pew,, Which p fails at level 62/72.

e WLOG, Sk = & for n > k.

@ Notation:

2m§

AT = (e Co « [l = 1, ) Tr(l0)(1Sf) > =

k<t

}7

for t, m € w. We may skip the proof in the interests of time and go
straight to the application.
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Corollary (B.): The set of g-MLR states is convex

A finite convex combination of g-MLR states is g-MLR: If (p/);~y are
g-MLR and Y., aj =1, then p = >,_, a;p' is g-MLR.

Tejas Bhojraj (UW-Madison) Quantum Solovay randomness Waterloo, June 2018 25 /41



Corollary (B.): The set of g-MLR states is convex

A finite convex combination of g-MLR states is g-MLR: If (p/);~y are
g-MLR and Y., aj =1, then p = >,_, a;p' is g-MLR.

@ Towards a contradiction,
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Corollary (B.): The set of g-MLR states is convex

A finite convex combination of g-MLR states is g-MLR: If (p/);~y are
g-MLR and Y., aj =1, then p = >,_, a;p' is g-MLR.

@ Towards a contradiction,

o let there be a g-MLT, (G™)mew and a 6 > 0 such that Vm e w,
p(G™) > 0.
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Corollary (B.): The set of g-MLR states is convex

A finite convex combination of g-MLR states is g-MLR: If (p/);~y are
g-MLR and Y., aj =1, then p = >,_, a;p' is g-MLR.

@ Towards a contradiction,

o let there be a g-MLT, (G™)mew and a 6 > 0 such that Vm € w,
p(G™) > 0.
e So, Vm € w, 3n such that Tr(p,G") > & where p, = > ;_, iph.
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Corollary (B.): The set of g-MLR states is convex

A finite convex combination of g-MLR states is g-MLR: If (p/);~y are
g-MLR and Y., aj =1, then p = >,_, a;p' is g-MLR.

@ Towards a contradiction,

o let there be a g-MLT, (G™)mew and a 6 > 0 such that Vm € w,
p(G™) > 0.

e So, Vm € w, 3n such that Tr(p,G") > & where p, = > ;_, iph.

@ l.e, Vm € w, 3n such that

§<Tr(Y aiphGl) = > aiTr(ph G).

i<k i<k
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Corollary (B.): The set of g-MLR states is convex

A finite convex combination of g-MLR states is g-MLR: If (p/);~y are
g-MLR and Y., aj =1, then p = >,_, a;p' is g-MLR.

@ Towards a contradiction,

o let there be a g-MLT, (G™)mew and a 6 > 0 such that Vm € w,
p(G™) > 0.

So, Vm € w, 3n such that Tr(p,G") > & where p, = >, @iph.

@ l.e, Vm € w, 3n such that

§<Tr(Y aiphGl) = > aiTr(ph G).

i<k i<k

e By convexity there must be an i such that Tr(G™p!) > &
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e So, Ym 3n, i such that Tr (p!, G™) > 6.
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e So, Ym 3n, i such that Tr (p!, G™) > 6.

@ There are only finitely many / s.

Tejas Bhojraj (UW-Madison) Quantum Solovay randomness Waterloo, June 2018 26 / 41



e So, Ym 3n, i such that Tr (p!, G™) > 6.
@ There are only finitely many / s.

@ By pigeonhole, there is an i such that 3°m with Tr (p},G™) > §, for
some n.
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So, ¥m 3n, i such that Tr (p!,G) > 4.

There are only finitely many i s.

By pigeonhole, there is an i such that 3%°m with Tr (p/,G™) > 4, for
some n.

e So, 3%°m with p'(G™) > 6.
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So, ¥m 3n, i such that Tr (p!,G) > 4.

There are only finitely many i s.

By pigeonhole, there is an i such that 3%°m with Tr (p/,G™) > 4, for
some n.

So, 3%°m with p'(G™) > 6.

So, p' fails the g-Solovay test (G™) e, and hence is not g-MLR by
our previous result.
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Thank You
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Constructing the g-MLT test

@ Build G™ = (G"),: Procedure to build G.
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Constructing the g-MLT test

@ Build G™ = (G]"),: Procedure to build G,
@ Say we are given C/",, a maximal (under set inclusion) orthonormal
subset of AT ;, and G| = {|¢))(¢| : € C™,}. Let

n—1: n
Dy ={lv)®|i):ie{l,0},ve 4}

Easy to see that D]’ < A since C]7; < A" ;.
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Constructing the g-MLT test

@ Build G™ = (G]"),: Procedure to build G,
@ Say we are given C/",, a maximal (under set inclusion) orthonormal

subset of AT ;, and G| = {|¢))(¢| : € C™,}. Let

n—1: n
Dy ={lv)®|i):ie{l,0},ve 4}

Easy to see that D]’ < A since C]7; < A" ;.

@ Let /7 be S where S is a maximal orthonormal set such that

D'c S c AT
Let G" = {|[v)(¢| : v € C'}.
End
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Verification

For each m, G™ = (G/™)pew is a quantum-X9 set.
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For each m, G™ = (G/™)pew is a quantum-X9 set.

o Given C;7, we built C" in stages t. CJly = D". To compute (T
given C"_;, check if:

3r € A such that Vo € G, (7]¢) = 0.

This check is decidable as Th(C,) is.
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For each m, G™ = (G/™)pew is a quantum-X9 set.

o Given C;7, we built C" in stages t. CJly = D". To compute (T
given C"_;, check if:

3r € A such that Vo € G, (7]¢) = 0.

This check is decidable as Th((Ca/g) is.

o If yes, find a witness 7 and set C/". = {7} U . If no, set

" = C._; and stop. By finite dlmenS|ona||ty, at some stage we
must stop.
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For each m, G™ = (G/™)pew is a quantum-X9 set.

o Given C;7, we built C" in stages t. CJly = D". To compute (T

given ,Ts_l, check if:

3r € A such that Vo € G, (7]¢) = 0.

This check is decidable as Th((Ca/g) is.

o If yes, find a witness 7 and set C, = {7} u CJ,_;. If no, set
" = C._; and stop. By finite dlmenS|ona||ty, at some stage we
must stop.

@ S0, (G])new is a uniformly computable sequence.
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For each m, G™ = (G/™)pew is a quantum-X9 set.

o Given C;7, we built C" in stages t. CJly = D". To compute (T
given C"_;, check if:

3r € A such that Vo € G, (7]¢) = 0.

This check is decidable as Th((Ca/g) is.

o If yes, find a witness 7 and set C, = {7} u CJ,_;. If no, set
" = C._; and stop. By finite dlmenS|ona||ty, at some stage we
must stop.

@ S0, (G])new is a uniformly computable sequence.
e By construction, range(G" ; ® k) < range(G,"). O
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(G™)mew is @ g-MLT.
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(G™)mew is @ g-MLT.

by definition
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(G™)mew is @ g-MLT.

1> ) 7(8%) =) 127"Tr(S)),
k

K
by definition
@ For fixed m, n we have that,

2" = 3 Tr(Sh)
k
> Tr( Y ) (wISy)

k PpeCm
= >0 D Tl (wlSK)
peCm k
> ‘C"Wﬁ
m 270
=Tr(G)— 5 O
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p fails (G™), at level 62/72. Or, for all m € w, there is an n such that

52
m 2 N
Tr(pn Gn ) 72
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p fails (G™), at level 62/72. Or, for all m € w, there is an n such that

52
m 2 N
Tr(pn Gn ) 72

o Let m be arbitrary.
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p fails (G™), at level 62/72. Or, for all m € w, there is an n such that

52
m 2 N
Tr(pn Gn ) 72

o Let m be arbitrary.

@ Fix a n so that there exist 2™ many ks less than n such that
Tr(pnSk) > 6.
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p fails (G™), at level 62/72. Or, for all m € w, there is an n such that

52
m 2 N
Tr(pn Gn ) 72

o Let m be arbitrary.

@ Fix a n so that there exist 2™ many ks less than n such that
Tr(pnSk) > 6.

@ Case 1: p, is algebraic:

Pn = Z ai|¢i><¢i|

i<2n

Ylicon @i = 1 and for each i, [¢") € C3 and ||¢']| < 1.
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o Fix i <2 let o) = o', Write

Y = Cotho + prp

where 1, € range(G) and v, € range(G/")* are unit vectors,
Co, p € C and Joo|? + |6pf* = [[9)[|? < 1.
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o Fix i <2 let o) = o', Write

Y = Cotho + prp

where 1, € range(G) and v, € range(G/")* are unit vectors,
Co, p € C and |oo|? + |6 = [[9)[| < 1.

@ For a k, let SX¥ = S. An easy, but long, calculation shows:
Tr(S|v)(¥]) <
‘C0|2<5¢o,5¢0> + ‘Cp’2<5wp‘5¢p> + 2‘C0”Cp”<5¢p‘5¢o>‘
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e By Cauchy-Schwarz:

|(S¥p|Stho)| < [1S¥olllStpll
< (max{[|Svs| |, [|S¥pl[})®
< |1S%olI? + 11w 2.
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e By Cauchy-Schwarz:

|(S¥p|Stho)| < [1S¥olllStpll
< (max{[|Svs| |, [|S¥pl[})®
< |1S%olI? + 11w 2.

@ Using this and that |c,|, |cp| < 1,

Tr(S[) (D)

|Col? (S0l Sto) + 6p|*(S¥pl Stp) + 2|coll ol (11S%ol I* + 11S¥pl 1)
|Col(StolStho) + Il (SUp|SPp) + 2/ co|lISPoll? + 2l cpll|Spl [
= 3(‘C0‘<5w0‘5¢0> + |Cp‘<57/)p|5¢p>)

<
<
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By the choice of n, pick M < {1,2...n} such that |[M| = 2™ and
Tr(pnSk) > & for each k in M.

2M§ < Z Tr(paSk)
keM

= TR il ) {(W15K)

keM i<2n

= 7D () (¢'|S)

keM i<2n

= S 3 Te(l ) (v S)

i<2n keM

< D5 ai ) 30 (SwbISKwh) + epl(SrvplSavp))-

i<2n keM
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So,

2m§ , , , . . .
S0 < 2 ar X (Iedl(SkublSkul) + el SkupISkus))
<20

keM

= D aile] D) (SawblSatbe) + D) ailegl X (SavplSyvp)

<20 keM i<2n keM
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So,

omg , , , . , .
= < 2 i ) (1 (Savol Shte) + lepl(SxwhlSawp))
i<2n keM

= D ailegl Y (SqwilSave) + 3 ailel D (SavplSavp)

<20 keM <20 keM

@ We now bound the second sum on the right-hand side.
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So,

2m§ , , , . . .
S0 < 2 ar X (Iedl(SkublSkul) + el SkupISkus))
<20

keM

= D aile] D) (SawblSatbe) + D) ailegl X (SavplSyvp)

i<2n keM i<2n keM
@ We now bound the second sum on the right-hand side.

@ Make a key use of the maximality of the orthonormal subset chosen
during the construction.
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® Vi, ¢}, € range(G")t n CZ.
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® Vi, ¢}, € range(G")t n CZ.

@ Hence, 1/1;', is perpendicular to each element of C/.
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® Vi, ¢}, € range(G")t n CZ.

@ Hence, 1/1;', is perpendicular to each element of C/.

o If o, € A7, then {¢,} U [ is a orthonormal subset of A7 strictly
containing C/7", contradicting the maximality of C/7.
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Vi, il € range(GM)*+ (ngg.

@ Hence, 1/1;', is perpendicular to each element of C/.
If i, € A, then {y},} U CJ is a orthonormal subset of A7 strictly
containing C/7", contradicting the maximality of C/7.

So, w;; ¢ AT for each i.
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® Vi, ¢}, € range(G")t n CZ.

@ Hence, 1/1;', is perpendicular to each element of C/.

o If o, € A7, then {¢,} U [ is a orthonormal subset of A7 strictly
containing C/7", contradicting the maximality of C/7.

e So, w;; ¢ AT for each i.

e But, 1,[),"3 € (Cg,"g and ||1/1;,H = 1. So the only way z,ZJ,’; ¢ AMis if
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Vi, il € range(GM)*+ (ngg.

Hence, 1/1;', is perpendicular to each element of C/.

If i, € A, then {y},} U CJ is a orthonormal subset of A7 strictly
containing C/7", contradicting the maximality of C/7.

So, w;; ¢ AT for each i.
But, 1,[),’; e C?, and ||1/J;,H = 1. So the only way z/;,’; ¢ AMis if

alg

o 2m§
D Tr([h) (IS < =

k<n 6
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Recall

We are trying to bound from above the second term on the right hand side

of

2;'5 < Y ailcl] D) (SKwiISkvl) + > ailchl Y (SkwhlSkh)

i<2n keM i<2n keM
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@ So, bound the sum as follows:

>, ailehl D) (SavplSavp)

i<2n keM

<ZCK,‘|C[,225<ZQ;2Z(5<225

i<2n i<2n
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@ So, bound the sum as follows:

>, ailehl D) (SavplSavp)

i<2n keM

<ZCK,‘|C[,225<ZCM,'2Z(5<225

i<an i<on
@ This means: omg
> ailegl Y, (SKwiISKwh) > e

i<2n keM

Tejas Bhojraj (UW-Madison) Quantum Solovay randomness Waterloo, June 2018 39 /41



o [(SxvolSatbe)l < 1and [M] =27
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o [(SKv}ISKws)l < 1and [M| =27
@ So, cancel the 2™s to get:

(o0

< Z Oz,'|C£|.

i<2n
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o [(SKv}ISKws)l < 1and [M| =27
@ So, cancel the 2™s to get:

(o0

< Z Oz,'|C£|.

i<2n

® As > onj =1, by Jensen's inequality:

52 . .
%< ( Z a,-|c(’,])2 < Z ajlct)?

i<2n i<2n
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|(ShwiISavs)l < 1and [M| =27
So, cancel the 2™s to get:

< Z Oz,'|C£|.

i<2n

(o0

® As > onj =1, by Jensen's inequality:

52 . .
%< ( Z a,-|c(’,])2 < Z ajlct)?

i<2n i<2n

Finally, it is easy to see that

Tr(pnGy) = > e Tr(|chl ) (i)

i<2n

ip. 9
= Z a,'|CO|2 > %

i<2n
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e Case 2: p, is not expressible as a convex sum of algebraic projections.

@ Since {9 € (Cgfg - |[1]| < 1} is dense in the closed unit ball in C?”,
2

using case 1, we see that Tr(p,G,") > -
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