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Hindman’s finite sums theorem

Given A ⊆ N, let FS(A) denote the set of all finite non-empty sums of
elements of A.

Hindman’s theorem (HT). For every k ≥ 1 and every c : N→ k, there is an
infinite set H ⊆ N such that c is constant on FS(H).

When we restrict HT to k-colorings for a specific k, we denote it by HTk.

• Original proof by Hindman (1972), simplified by Baumgartner (1974).

• Ultrafilter proof by Galvin and Glazer (1977).

• Dynamics proof by Furstenburg and Weiss (1978).

• Reverse mathematics: Blass, Hirst, and Simpson (1987).

• A much simpler combinatorial proof by Towsner (2012).



Comparison with Ramsey’s theorem

Given A ⊆ N and n ≥ 1, let [A]n = {(x1, . . . , xn) ∈ An : x1 < · · · < xn}.

A set H ⊆ N is homogeneoushomogeneoushomogeneoushomogeneoushomogeneoushomogeneoushomogeneoushomogeneoushomogeneoushomogeneoushomogeneoushomogeneoushomogeneoushomogeneoushomogeneoushomogeneoushomogeneous for c : [N]n → k if c is constant on [H]n.

Ramsey’s theorem (RT). For all n, k ≥ 1, every c : [N]n → k has an infinite
homogeneous set.

RTnk denotes the restriction to a specific n and k.

There are also many proofs of RT, but many are quite elementary.

Example. How do you build 3-element solution to RT?

• Trivial for n = 1 and n = 3, not meaningful for n > 3.

• Given c : [ω]2 → 2, how do you build a 3-element homogeneous set?



A 3-element solution to HT

Claim. Every c : N→ {R,B} is constant on FS(F) for some 3-element set F.

Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof. WLOG, say c(0) = B. We may assume ∃∞x [c(x) = B].

If there exist positive x < y with c(x) = c(y) = c(x+ y) = B, take
F = {0, x, y}. So assume not.

Fix x1 < x2 < · · · < x6 such that c(xi) = B for each i and the difference
between any two consecutive xi’s is different.

Let di = xi+1 − xi.

x1 x2 x3 x4 x5 x6
d1 d2 d3 d4 d5



A 3-element solution to HT

x1 x2 x3 x4 x5 x6
d1 d2 d3 d4 d5

By assumption, it must be that c(di) = R for each i.



A 3-element solution to HT

x1 x2 x3 x4 x5 x6
d1 d2 d3 d4 d5

By assumption, it must be that c(di) = R for each i.

Similarly, the sum of any consecutive di’s must also be colored R by c.

Finally, it cannot be that c(d1+ d4) = c(d2+ d5) = c(d1+ d2+ d4+ d5) = B.

So if c(d1 + d4) = R, we can take F = {d1, d2 + d3, d4}.

If c(d2 + d5) = R, we can take F = {d2, d3 + d4, d5}.

And if c(d1 + d2 + d4 + d5) = R, we can take F = {d1 + d2, d3, d4 + d5}.
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HT and reverse mathematics

Blass, Hirst, and Simpson (1987) proved that every computable instance of HT
has a solution computable from 0(ω+2), but not necessarily 0′.

Adapting Jockusch’s results on RT32, they showed that there is a computable
instance all of whose solutions compute 0′.

Theorem (Blass, Hirst, and Simpson, 1987).
• HT is provable in ACA+0 .

• Over RCA0, HT2 implies ACA0.

Thirty years later, this is still the state of the art.

There has been quite a bit of work on extensions of HT.



Two restrictions

Given A ⊆ N and n ≥ 1, let FS≤n(A) denote the set of all non-empty sums of
at most nat most nat most nat most nat most nat most nat most nat most nat most nat most nat most nat most nat most nat most nat most nat most nat most n elements of A.

Let HT≤n and HT≤nk denote the obvious restrictions of HT and HTk.

Question (Hindman, Leader and Strauss, 2003). Is there a proof of HT≤2 that is
not already a proof of the full HT?

From their paper: “It seems truly remarkable that this can be unknown.”

Given A ⊆ N and n ≥ 1, let FS=n(A) denote the set of all sums of exactly nexactly nexactly nexactly nexactly nexactly nexactly nexactly nexactly nexactly nexactly nexactly nexactly nexactly nexactly nexactly nexactly n
elements. Let HT=n and HT=nk denote the obvious restrictions.

Obviously, HTk → HT≤nk → HT=nk . Also, RTnk → HT=nk .



HT for sums of length at most 2

A paradox:

• we know of no proof of HT≤22 other than the proof of the full HT,

• yet it is not at all clear how to show that HT≤22 is not computbaly true.

Recall that a coloring c : [N]2 → 2 is stablestablestablestablestablestablestablestablestablestablestablestablestablestablestablestablestable if (∀x) limy f(x, y) exists.

SRT22 is the restriction of Ramsey’s theorem to stable colorings.

Theorem (Dzhafarov, Jockusch, Solomon, and Westrick).
Over RCA0, HT

≤2
2 implies SRT22.

Thus, in particular, there is a computable instance of HT≤22 with no computable
solution.



Apartness
Fix b ≥ 2 and x ∈ N. If x = i0 · be0 + · · ·+ it · bet where
i0, . . . , it ∈ {1, . . . , b− 1} and e0 < · · · < et, let λb(x) = e0 and µb(x) = et.

Say two natural numbers x < y are b-apartb-apartb-apartb-apartb-apartb-apartb-apartb-apartb-apartb-apartb-apartb-apartb-apartb-apartb-apartb-apartb-apart if µb(x) < λb(y).

HT with b-apartness is the statement of HT in which all elements of the
monochromatic are required to be pairwise b-apart.

Facts.
• For each k, b ≥ 2, RCA0 proves HTk ↔ HTk with b-apartness.

• For each b ≥ 2, RCA0 proves HT↔ HT with b-apartness.

In fact, all of these are strong computable equivalences.

The proof that HT implies HT with b-apartness does not lift to also show HT≤n

with b-apartness implies HT≤n with b-apartness.



HT with apartness
Theorem (Carlucci, Kołodziejczyk, Lepore, and Zdanowski, 2017).
• For any b ≥ 2, RCA0 proves that HT

≤2
2 with b-apartness implies ACA0.

• RCA0 proves that HT
≤2
4 implies ACA0.

The apartness condition is not really “cheating”. It is used in most proofs
of/from Hindman’s theorem, and was present in the original formulation. It can
also be recast as a natural principle, the Finite unions theorem.

Corollary. Our best bounds for HT≤2 are the same as for the full HT.

A note on strong reductions
• Our proof that HT≤22 → SRT22 actually shows that SRT

2
2 ≤sc HT

≤2
2 .

• Carlucci (2017) showed that IPT22 ≤sc HT
≤2
4 , where IPT22 is the strictly

• stronger increasing polarized Ramsey’s theorem for pairs.



HT for sums of length exactly 2

HT=nk is an obvious corollary of RTnk .

Theorem (Carlucci, Kołodziejczyk, Lepore, and Zdanowski, 2017).
If n|m then HTn ≤sc HTm.

Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.Proof.

• Fix c : N→ k. Say m = nd. Let H = {x1 < x2 < · · · } be an infinite set
• such that c is constant on FS=m(H). Now define G to be the set
• {x1 + · · ·+ xd, xd+1 + · · ·+ x2d+1, . . .}. Then c is constant on FS=n(G).

Theorem (Carlucci, Kołodziejczyk, Lepore, and Zdanowski, 2017).
For any n ≥ 3, b ≥ 2, HT=n with b-apartness is equivalent to ACA0.

What about HT=2? Can we at least show it’s not computably true?



Diagonalization strategy

We want to build a computable coloring c : N→ 2.

For each e, wait for a certain-sized finite Fe ⊆ We to be enumerated.

For sufficiently large s, ensure Fe + s is not homogeneous.

Dealing with a single c.e. setW.Dealing with a single c.e. setW.Dealing with a single c.e. setW.Dealing with a single c.e. setW.Dealing with a single c.e. setW.Dealing with a single c.e. setW.Dealing with a single c.e. setW.Dealing with a single c.e. setW.Dealing with a single c.e. setW.Dealing with a single c.e. setW.Dealing with a single c.e. setW.Dealing with a single c.e. setW.Dealing with a single c.e. setW.Dealing with a single c.e. setW.Dealing with a single c.e. setW.Dealing with a single c.e. setW.Dealing with a single c.e. setW.

• Wait for some x < y inW to be enumerated intoW. Let d = y− x.

• For each s ≤ d let c(s) = 0.

• For s > d, having inductively defined c ↾ s, define c(s) = 1− c(s− d).

• Now c(y+ s) = 1− c(y+ s− d) = 1− c(x+ s) for all large enough s.



Diagonalization strategy

The basic strategy fails even for two c.e. sets,W0 andW1.

Example.Example.Example.Example.Example.Example.Example.Example.Example.Example.Example.Example.Example.Example.Example.Example.Example.

• Suppose F0 = {0, 1} and F1 = {0, 2}.

• Then for all s, one of F0 + s, F1 + s, F0 + (s+ 1) must be
• homogeneous.

This failure gives us some insights.

• The probability that Fe + s is homogeneous is only 2−|Fe|+1.

• If s < t are far enough apart, then Fe + s and Fi + t are disjoint.



* Thanks to Jason Bell and Jeff Shallit (U Waterloo).
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An application of the Lovász local lemma

Consider a collection x0, x1, . . . of independent binary random variables.

A clauseclauseclauseclauseclauseclauseclauseclauseclauseclauseclauseclauseclauseclauseclauseclauseclause is a finite sequence xn0 = i0 ∨ · · · ∨ xnk = ik, where i0, . . . , ik ∈ {0, 1}.

A CNFCNFCNFCNFCNFCNFCNFCNFCNFCNFCNFCNFCNFCNFCNFCNFCNF is an infinite conjunction of clauses.

A satisfying assignmentsatisfying assignmentsatisfying assignmentsatisfying assignmentsatisfying assignmentsatisfying assignmentsatisfying assignmentsatisfying assignmentsatisfying assignmentsatisfying assignmentsatisfying assignmentsatisfying assignmentsatisfying assignmentsatisfying assignmentsatisfying assignmentsatisfying assignmentsatisfying assignment for a CNF is a map c : N→ {0, 1} such that each
conjunct in the CNF has a disjunct xn = i and c(n) = i.

Theorem (Rumyantsev and Shen, 2014).
For every α ∈ (0, 1), there exists an N ∈ N such that every computable infinite
CNF in which all clauses have size at least N, and for all m ≥ N, every variable
appears in at most 2αm clauses of size m, has a computable satisfying
assignment.



An application of the Lovász local lemma

Theorem (Rumyantsev and Shen, 2014).
For every α ∈ (0, 1), there exists an N ∈ N such that every computable infinite
CNF in which all clauses have size at least N, and for all m ≥ N, every variable
appears in at most 2αm clauses of size m, has a computable satisfying
assignment.

Let α = 0.5. Fix N as above. For each e, wait for Fe ⊆ We of size N+ e.

Take the CNF whose clauses are
∨

n∈Fe+s xn = 0 and
∨

n∈Fe+s xn = 1 for all
sufficiently large s.

If c is a satisfying assignment andWe is infinite, then c is not homogeneous on
Fe + s for all sufficiently large s.



Corollaries

Theorem (Csima, D., Hirschfeldt, Jockusch, Solomon, and Westrick).
There exists a computable instance of HT=22 with no computable solution.

Corollary. RCA0 does not prove HT=22 .

A modification of the argument also yields the following:

Theorem (Csima, D., Hirschfeldt, Jockusch, Solomon, and Westrick).
There exists a computable instance of HT=22 every solution of which computes
a DNC(0′) function.

Corollary. RCA0 proves HT=22 → RRT22.

Here, RRT22 is the Rainbow Ramsey’s theorem for pairs.



Ramseyan factorization theorem

Murakami, Yamazaki, and Yokoyama introduced the following principle in
connection with their work on the Ramseyan factorization theorem.

Fix n, k ≥ 1 and f : [N]n → N.

RTfk is the statement that for every c : N→ k there is an infinite set H ⊆ N
such that c ◦ f is constant on [H]n.

If f(x1, . . . , xn) = x1 + · · ·+ xn for all x1, . . . , xn ∈ N then RTfk = HT=nk .

Theorem (Murakami, Yamazaki, and Yokoyama, 2014).
• RCA0 proves RTnk → (∀f : [N]n → N) RTfk.

• If f : [N]n → N is a bijection then RTfk ↔ RTnk over RCA0.



Addition-like functions

A computable function f : [N]2 → N is addition-likeaddition-likeaddition-likeaddition-likeaddition-likeaddition-likeaddition-likeaddition-likeaddition-likeaddition-likeaddition-likeaddition-likeaddition-likeaddition-likeaddition-likeaddition-likeaddition-like if

• there is a computable function g such that y > g(x, n)→ f(x, y) > n,

• there is a b such that |{y : f(x, y) = k}| < b for all x, k ∈ N.

Examples.Examples.Examples.Examples.Examples.Examples.Examples.Examples.Examples.Examples.Examples.Examples.Examples.Examples.Examples.Examples.Examples.

• Addition.

• Subtraction/difference.

Theorem (Csima, D., Hirschfeldt, Jockusch, Solomon, and Westrick).
For each addition-like f, there exists a computable instance of RTf2 all of whose
solutions compute a DNC(0′) function.

Corollary. For each addition-like f, RCA0 proves RTf2 → RRT22.



Further applications

Theorem (Cholak, D., Hirschfeldt, and Patey).
There exists an instance of HT=22 such that the class of oracles that compute a
solution to c has measure 0.

OVW(2, 2) is the Ordered variable word problem for 2-element alphabets.

Miller and Solomon (2004) constructed a computable instance of OVW(2, 2)
with no computable solution.

Theorem (Liu, Monin, and Patey, 2018).
There exists a computable instance of OVW(2, 2) all of whose solutions
compute a DNC(0′) function.



Thanks for your attention!


