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Introduction

A question

Fix Lgr = {1, ·,−1 }.

How hard is it to describe a group up to isomorphism?
Finite groups can be characterized by a single first-order
sentence.
ℵ0-categorical groups can be characterized by its first-order theory
within countable groups.
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Introduction

Scott sentences

We will work in Lω1,ω, where we allow countable conjunctions and
countable disjunctions.

Theorem (Scott, ‘65)
For every countable structure in a countable language, there’s a
sentence whose countable models are exactly the isomorphic copies
of the structure. Such a sentence is called a Scott sentence.

We will require our Scott sentences to be computable.
We will be working with the quantifier complexity classes (Σn, Πn,
and d-Σn formulas.)
We are interested in finding “optimal” Scott sentences for
finitely-generated groups.
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Introduction

Index sets

For a computable structure A, we define the index set I(A) of A to be
the set of all indices e such that Φe outputs an isomorphic copy of A.

We will be working with the arithmetical hierarchy (Σn, Πn, and
d-Σn sets) and m-degrees.
For a given structure, the complexity of a computable Scott
sentence is higher than or equal to the complexity of the index set.
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History

History

Calvert, Harizanov, Knight, Miller (‘06): Vector spaces,
Archimedean ordered fields, reduced abelian p-groups

Carson, Harizanov, Knight, Lange, McCoy, Morozov, Quinn,
Safranski, Wallbaum (‘12): Free groups of finite and infinite rank
Knight, Saraph (‘13): Finitely-generated abelian groups, the
infinite dihedral group, torsion free abelian groups of rank 1
H. (‘17): Free nilpotent groups of infinite rank, polycyclic groups,
lamplighter groups, solvable Baumslag-Solitar groups, (Gromov)
random groups
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History

History

Theorem (Knight, Saraph)

Every computable finitely-generated group has a Σ3 computable Scott
sentence.

For G = 〈a〉, consider ∃x(∀y∃w w(x) = y) ∧ (∀r r(a)↔ r(x)).

Finitely-generated free groups, infinite dihedral groups, polycyclic
groups, lamplighter groups, solvable groups, and random groups all
have a computable d-Σ2 Scott sentence.

For Z, consider (∃x∀y∀k ky 6= x)∧∀x(∀y∀k ky 6= x)→ (∀y∃k y = kx).

Question (Knight, Saraph)

Does every finitely-generated computable group have a computable
d-Σ2 Scott sentence?
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An example

Main Lemma

(∃x∀y∀k ky 6= x) ∧ ∀x(∀y∀k ky 6= x)→ (∀y∃k y = kx)

Theorem (Alvir, Knight, McCoy)

Let A be a computable finitely-generated structure. Then the following
are equivalent:

1 A has a computable d-Σ2 Scott sentence.
2 The orbit of some (equivalently, all) generating tuple is defined by

a computable Π1 formula.

Theorem (Harrison-Trainor, H.)
Let A be a finitely-generated structure. Then A has no d-Σ2 Scott
sentence if and only if A is self-reflective, i.e. A has a proper
substructure B such that A ∼= B and B ≤1 A.
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An example

Constructing the example

A finitely-generated structure A is self-reflective if A has a proper
substructure B such that A ∼= B and B ≤1 A.

Theorem (Harrison-Trainor, H.)
There is a computable self-reflective group. Thus, it does not have a
d-Σ2 Scott sentence.

We first construct a computable finitely-generated structure that is
self-reflective.
Then we use small cancellation theory to code the structure into a
computable self-reflective finitely-generated group.

Question
Does every finitely-presented computable group have a (computable)
d-Σ2 Scott sentence?
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An example

Thank you

Thank you!
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