Scott Sentences of Finitely-Generated Groups

Meng-Che “Turbo” Ho
(Joint with Matthew Harrison-Trainor)

Department of Mathematics
Purdue University

June 5th, 2018
Workshop on Computability Theory and its Applications, University of Waterloo
A question

Fix $\mathcal{L}_{gr} = \{1, \cdot, -1\}$.
A question

Fix $\mathcal{L}_{\text{gr}} = \{1, \cdot, -1\}$.

How hard is it to describe a group up to isomorphism?
A question

Fix $\mathcal{L}_{gr} = \{1, \cdot, -1\}$.

How hard is it to describe a group up to isomorphism?

- Finite groups can be characterized by a single first-order sentence.
Fix $\mathcal{L}_{gr} = \{1, \cdot, ^{-1}\}$.

How hard is it to describe a group up to isomorphism?

- Finite groups can be characterized by a single first-order sentence.
- \aleph_0-categorical groups can be characterized by its first-order theory within countable groups.
We will work in $L_{\omega_1,\omega}$, where we allow countable conjunctions and countable disjunctions.

Theorem (Scott, '65)

For every countable structure in a countable language, there's a sentence whose countable models are exactly the isomorphic copies of the structure. Such a sentence is called a Scott sentence.

We will require our Scott sentences to be computable.

We are interested in finding "optimal" Scott sentences for finitely-generated groups.
Scott sentences

We will work in $L_{\omega_1,\omega}$, where we allow countable conjunctions and countable disjunctions.

Theorem (Scott, ‘65)

*For every countable structure in a countable language, there’s a sentence whose countable models are exactly the isomorphic copies of the structure. Such a sentence is called a **Scott sentence**.*
We will work in $L_{\omega_1,\omega}$, where we allow countable conjunctions and countable disjunctions.

Theorem (Scott, ‘65)

For every countable structure in a countable language, there’s a sentence whose countable models are exactly the isomorphic copies of the structure. Such a sentence is called a Scott sentence.

- We will require our Scott sentences to be computable.
Scott sentences

We will work in $L_{\omega_1,\omega}$, where we allow countable conjunctions and countable disjunctions.

Theorem (Scott, ‘65)

For every countable structure in a countable language, there’s a sentence whose countable models are exactly the isomorphic copies of the structure. Such a sentence is called a Scott sentence.

- We will require our Scott sentences to be computable.
- We will be working with the quantifier complexity classes (Σ_n, Π_n, and $d-\Sigma_n$ formulas.)
We will work in $L_{\omega_1, \omega}$, where we allow countable conjunctions and countable disjunctions.

Theorem (Scott, ‘65)

*For every countable structure in a countable language, there’s a sentence whose countable models are exactly the isomorphic copies of the structure. Such a sentence is called a **Scott sentence**.*

- We will require our Scott sentences to be computable.
- We will be working with the quantifier complexity classes (Σ_n, Π_n, and $d-\Sigma_n$ formulas.)
- We are interested in finding “optimal” Scott sentences for finitely-generated groups.
For a computable structure \mathcal{A}, we define the **index set** $I(\mathcal{A})$ of \mathcal{A} to be the set of all indices e such that Φ_e outputs an isomorphic copy of \mathcal{A}.
Index sets

For a computable structure \mathcal{A}, we define the index set $I(\mathcal{A})$ of \mathcal{A} to be the set of all indices e such that Φ_e outputs an isomorphic copy of \mathcal{A}.

- We will be working with the arithmetical hierarchy (Σ_n, Π_n, and $d-\Sigma_n$ sets) and m-degrees.
For a computable structure \mathcal{A}, we define the **index set** $I(\mathcal{A})$ of \mathcal{A} to be the set of all indices e such that Φ_e outputs an isomorphic copy of \mathcal{A}.

- We will be working with the arithmetical hierarchy (Σ_n, Π_n, and $d-\Sigma_n$ sets) and m-degrees.

- For a given structure, the complexity of a computable Scott sentence is higher than or equal to the complexity of the index set.
Calvert, Harizanov, Knight, Miller (‘06): Vector spaces, Archimedean ordered fields, reduced abelian p-groups
Calvert, Harizanov, Knight, Miller (‘06): Vector spaces, Archimedean ordered fields, reduced abelian p-groups

Carson, Harizanov, Knight, Lange, McCoy, Morozov, Quinn, Safranski, Wallbaum (‘12): Free groups of finite and infinite rank
Calvert, Harizanov, Knight, Miller (‘06): Vector spaces, Archimedean ordered fields, reduced abelian p-groups

Carson, Harizanov, Knight, Lange, McCoy, Morozov, Quinn, Safranski, Wallbaum (‘12): Free groups of finite and infinite rank

Knight, Saraph (‘13): Finitely-generated abelian groups, the infinite dihedral group, torsion free abelian groups of rank 1
Calvert, Harizanov, Knight, Miller (‘06): Vector spaces, Archimedean ordered fields, reduced abelian p-groups

Carson, Harizanov, Knight, Lange, McCoy, Morozov, Quinn, Safranski, Wallbaum (‘12): Free groups of finite and infinite rank

Knight, Saraph (‘13): Finitely-generated abelian groups, the infinite dihedral group, torsion free abelian groups of rank 1

H. (‘17): Free nilpotent groups of infinite rank, polycyclic groups, lamplighter groups, solvable Baumslag-Solitar groups, (Gromov) random groups
Theorem (Knight, Saraph)

Every computable finitely-generated group has a Σ_3 computable Scott sentence.
Theorem (Knight, Saraph)

Every computable finitely-generated group has a Σ_3 computable Scott sentence.

For $G = \langle a \rangle$, consider $\exists x (\forall y \exists w \ w(x) = y) \land (\forall r \ r(a) \leftrightarrow r(x))$.

Finitely-generated free groups, infinite dihedral groups, polycyclic groups, lamplighter groups, solvable groups, and random groups all have a computable d-Σ_2 Scott sentence.

For \mathbb{Z}, consider $(\exists x \forall y \forall k \ k \neq x) \land (\forall x (\forall y \forall k \ k \neq x) \rightarrow (\forall y \exists k \ y = kx))$.
Theorem (Knight, Saraph)

Every computable finitely-generated group has a Σ_3 computable Scott sentence.

For $G = \langle a \rangle$, consider $\exists x (\forall y \exists w \ w(x) = y) \land (\forall r \ r(a) \leftrightarrow r(x))$.

Finitely-generated free groups, infinite dihedral groups, polycyclic groups, lamplighter groups, solvable groups, and random groups all have a computable d-Σ_2 Scott sentence.
Theorem (Knight, Saraph)

Every computable finitely-generated group has a Σ_3 computable Scott sentence.

For $G = \langle \bar{a} \rangle$, consider $\exists \bar{x}(\forall y \exists w \ w(\bar{x}) = y) \land (\forall r \ r(\bar{a}) \leftrightarrow r(\bar{x}))$.

Finitely-generated free groups, infinite dihedral groups, polycyclic groups, lamplighter groups, solvable groups, and random groups all have a computable $d-\Sigma_2$ Scott sentence.

For \mathbb{Z}, consider $(\exists x \forall y \forall k \ ky \neq x) \land \forall x(\forall y \forall k \ ky \neq x) \rightarrow (\forall y \exists k \ y = kx)$.
History

Theorem (Knight, Saraph)

Every computable finitely-generated group has a Σ_3 computable Scott sentence.

For $G = \langle \bar{a} \rangle$, consider $\exists \bar{x}(\forall y \exists w \ w(\bar{x}) = y) \land (\forall r \ r(\bar{a}) \leftrightarrow r(\bar{x}))$.

Finitely-generated free groups, infinite dihedral groups, polycyclic groups, lamplighter groups, solvable groups, and random groups all have a computable d-Σ_2 Scott sentence.

For \mathbb{Z}, consider $(\exists x \forall y \forall k \ ky \neq x) \land \forall x(\forall y \forall k \ ky \neq x) \rightarrow (\forall y \exists k \ y = kx)$.

Question (Knight, Saraph)

Does every finitely-generated computable group have a computable d-Σ_2 Scott sentence?
Main Lemma

\[(\exists x \forall y \forall k \, ky \neq x) \land \forall x(\forall y \forall k \, ky \neq x) \rightarrow (\forall y \exists k \, y = kx)\]
An example

Main Lemma

\[(\exists x \forall y \forall k \; ky \neq x) \land \forall x (\forall y \forall k \; ky \neq x) \rightarrow (\forall y \exists k \; y = kx)\]

Theorem (Alvir, Knight, McCoy)

Let \(A\) be a computable finitely-generated structure. Then the following are equivalent:

1. \(A\) has a computable \(d\-\Sigma_2\) Scott sentence.
2. The orbit of some (equivalently, all) generating tuple is defined by a computable \(\Pi_1\) formula.

Theorem (Harrison-Trainor, H.)

Let \(A\) be a finitely-generated structure. Then \(A\) has no \(d\-\Sigma_2\) Scott sentence if and only if \(A\) is self-reflective, i.e. \(A\) has a proper substructure \(B\) such that \(A \sim B\) and \(B \leq A\).
Main Lemma

\[(\exists x \forall y \forall k \ ky \neq x) \land \forall x(\forall y \forall k \ ky \neq x) \rightarrow (\forall y \exists k \ y = kx)\]

Theorem (Alvir, Knight, McCoy)

Let A be a computable finitely-generated structure. Then the following are equivalent:

1. A has a computable d-\(\Sigma_2\) Scott sentence.
2. The orbit of some (equivalently, all) generating tuple is defined by a computable \(\Pi_1\) formula.

Theorem (Harrison-Trainor, H.)

Let A be a finitely-generated structure. Then A has no d-\(\Sigma_2\) Scott sentence if and only if A is self-reflective, i.e. A has a proper substructure B such that \(A \cong B\) and \(B \leq_1 A\).
A finitely-generated structure A is *self-reflective* if A has a proper substructure B such that $A \cong B$ and $B \leq_1 A$.

Theorem (Harrison-Trainor, H.) There is a computable self-reflective group. Thus, it does not have a $d\Sigma_2$ Scott sentence.

We first construct a computable finitely-generated structure that is self-reflective. Then we use small cancellation theory to code the structure into a computable self-reflective finitely-generated group.
A finitely-generated structure A is *self-reflective* if A has a proper substructure B such that $A \cong B$ and $B \leq_1 A$.

Theorem (Harrison-Trainor, H.)

There is a computable self-reflective group. Thus, it does not have a d-Σ_2 Scott sentence.
A finitely-generated structure A is *self-reflective* if A has a proper substructure B such that $A \cong B$ and $B \leq_1 A$.

Theorem (Harrison-Trainor, H.)

There is a computable self-reflective group. Thus, it does not have a $d\Sigma_2$ Scott sentence.

We first construct a computable finitely-generated structure that is self-reflective.
Constructing the example

A finitely-generated structure A is \textit{self-reflective} if A has a proper substructure B such that $A \cong B$ and $B \leq_1 A$.

\textbf{Theorem (Harrison-Trainor, H.)}

\textit{There is a computable self-reflective group. Thus, it does not have a d-Σ_2 Scott sentence.}

We first construct a computable finitely-generated structure that is self-reflective. Then we use small cancellation theory to code the structure into a computable self-reflective finitely-generated group.
A finitely-generated structure A is *self-reflective* if A has a proper substructure B such that $A \cong B$ and $B \leq_1 A$.

Theorem (Harrison-Trainor, H.)

There is a computable self-reflective group. Thus, it does not have a d-Σ_2 Scott sentence.

We first construct a computable finitely-generated structure that is self-reflective. Then we use small cancellation theory to code the structure into a computable self-reflective finitely-generated group.

Question

Does every finitely-presented computable group have a (computable) d-Σ_2 Scott sentence?

Thank you!