▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Permutations of the integers do not induce nontrivial automorphisms of the Turing degrees

Bjørn Kjos-Hanssen

June 5, 2018

- Part I: Structure of the Turing degrees (2002)
- Part II: Randomness for Bernoulli measures (2009)
- Part III: Permutations don't induce automorphisms of Aut($\mathcal{D})$ (2015/2018)
- Part IV: Aut(D) is O-presentable (2018)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Part I: Structure of the Turing degrees

The Turing degrees

Definition 1

For $A, B \subseteq \omega$, we say that $A \leq_T B$ if A can be computed from B. If $A \leq_T B$ and $B \leq_T A$ then we say that $A \equiv_T B$. If $\mathbf{a} = \{X \mid X \equiv_T A\}$ denotes the Turing degree of A and we define $\mathbf{a} \leq \mathbf{b} \leftrightarrow A \leq_T B$, then $\mathcal{D} = \{\mathbf{a} \mid A \subseteq \omega\}$ is the upper semilattice of Turing degrees.

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ○臣 - のへで

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

L.u.b., not always g.l.b.

The least upper bound of two tasks in terms of difficulty should be to do them both.

The greatest lower bound – it is not so clear what that would be. This is reflected in the fact that the Turing degrees form an upper semilattice which is not a lattice, i.e. any two degrees have a l.u.b. but some do not have a g.l.b.

Here the task corresponding to a degree \mathbf{a} is to answer questions of the form " $x \in A$?".

Automorphisms, subalgebras, ideals

Note that 0 and \leq are definable from the l.u.b. operation \lor . Shore and Slaman (1999) showed that so is the map $\mathbf{a} \mapsto \mathbf{a}'$. Here are a few natural things we should know about the algebra $\langle \mathcal{D}, \lor \rangle$, in order to say that we understand it.

Automorphisms - bijections $\pi:\mathcal{D}\to\mathcal{D}$ such that

$$\pi(\mathbf{x} \vee \mathbf{y}) = \pi(\mathbf{x}) \vee \pi(\mathbf{y}).$$

Subalgebras - subsets of $\mathcal D$ closed under $\lor.$

Ideals - sets
$$\mathcal{I} \subseteq \mathcal{D}$$
 that are "ideal elements" in the sense
that if we write $\mathbf{a} \leq \mathcal{I}$ for $\mathbf{a} \in \mathcal{I}$, then
 $\mathbf{a} \leq \mathbf{b} \leq \mathcal{I} \Rightarrow \mathbf{a} \leq I$, and
 $\mathbf{a} \leq \mathcal{I}, \mathbf{b} \leq \mathcal{I} \Rightarrow \mathbf{a} \lor \mathbf{b} \leq \mathcal{I}$.

Groszek and Slaman (1983) showed that isomorphism types of subalgebras and ideals are not determined by ZFC. Open problem: Does $\langle \mathcal{D}, \vee \rangle$ have any nontrivial automorphism?

History of ideals

Given a cardinal κ , let $P(\kappa) \Leftrightarrow$ ldeals of \mathcal{D} size $\leq \kappa$ realize all conceivable isomorphism types.

- '54 Kleene-Post $\vdash P(1)$ (trivial)
- '56 **Spector** $\vdash P(2)$ (forcing with trees)
- '65 Titgemeyer $\vdash P(3)$
- '68 Lachlan $\vdash P(4)$
- '69 Lerman $\vdash P(5)$
- '71 Lerman $\vdash (\forall \kappa < \aleph_0) P(\kappa)$ (homogeneity)
- '76 Lachlan-Lebeuf $\vdash P(\aleph_0)$ (embeddings)
- '83 Groszek-Slaman: $ZFC \not\vdash P(2^{\aleph_0})$
- '86 Abraham-Shore $\vdash P(\aleph_1)$

Σ_1 -presentable semilattices

We say that an upper semilattice L is Σ_1^0 -presentable if there exists a transitive and reflexive Σ_1^0 relation \leq on ω and a Δ_1^0 binary operation \vee on ω such that if we mod out by $a \equiv b \Leftrightarrow a \leq b \& b \leq a$ then we get L with its order and l.u.b. operation. Similarly we get a notion of $\Sigma_1^0(\mathbf{a})$ -presentable for any Turing degree \mathbf{a} .

Lemma 2

 $[\mathbf{a},\mathbf{b}]$ is $\Sigma_3^0(\mathbf{b})$ -presentable, for any Turing degrees $\mathbf{a} \leq \mathbf{b}$.

Proof sketch: $\mathbf{a} \leq \mathbf{b}$ if there exists e such that for all x, $\{e\}^B(x)$ halts and equals A(x). A representative of the Turing degree $\mathbf{a} \vee \mathbf{b}$ is given by $A \oplus B := \{2x \mid x \in A\} \cup \{2x + 1 \mid x \in B\}$. And $\{e \mid \{e\}^B \text{ is total}\}$ is computable from B''. [] For many \mathbf{a} , \mathbf{b} this is also best possible (e.g. for $\mathbf{b} \geq \mathbf{0}'$). So in describing \mathcal{D} we seem to have to use \mathcal{D} itself!

Automorphisms

Question of Schweber

Some useful tools

Theorem 3 (Friedberg 1957)

If $\mathbf{x} \ge \mathbf{0}'$ then there exists \mathbf{a} with $\mathbf{a}' = \mathbf{x}$.

Theorem 4 (Jockusch, Posner 1978)

If $a \le 0'$ and [0, a] is a lattice then a'' = 0'' and hence [0, a] is Σ_3^0 -presentable.

- ロト - 4 目 ト - 4 目 ト - 4 目 - 9 9 9

Application to automorphisms

Theorem 5

Let $a \ge 0''$ and let *L* be a lattice with 0 and 1. The following are equivalent:

- 1. *L* is $\Sigma_1^0(\mathbf{a})$ -presentable.
- 2. $L \cong [0, \mathbf{g}]$ for some $\mathbf{g}'' \leq \mathbf{a}$.

But the collection of $\Sigma_1^0(\mathbf{a})$ -presentable L determines \mathbf{a} . This gives a "reason" why the following result is true:

Corollary 6 (Slaman, Woodin)

Every automorphism of $\langle \mathcal{D}, \leq, ' \rangle$ is the identity above $\mathbf{0}''$.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Part II: Randomness for Bernoulli measures

Automorphisms

Question of Schweber

Randomness

Definition

A test for μ -randomness is a uniformly $\Sigma_1^0(\mu)$ sequence $\{U_n\}_{n \in \omega}$ with $\mu(U_n) \leq 2^{-n}$.

If *X* passes all μ -randomness tests then *X* is μ -random.

Martin-Löf randomness for arbitrary measures on 2^{ω} (Reimann and Slaman).

Automorphisms

Question of Schweber

Hippocratic randomness

Definition

A test for Hippocratic μ -randomness is a uniformly Σ_1^0 sequence $\{U_n\}_{n\in\omega}$ with $\mu(U_n) \leq 2^{-n}$.

If X passes all Hippocratic tests then X is Hippocrates μ -random.

Like Hippocrates we are not consulting the oracle μ but rather looking for "natural causes".

Bernoulli measures

For each $n \in \omega$,

$$\mu_p(\{X : X(n) = 1\}) = p$$
$$\mu_p(\{X : X(n) = 0\}) = 1 - p$$

and $X(0), X(1), X(2), \ldots$ are mutually independent random variables.

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Proposition

Consider an i.i.d. sequence $Y = \{Y_n\}_{n \in \omega}$ of Bernoulli(*p*) random variables, and the sample average $\overline{Y}_n = \frac{1}{n} \sum_{i=0}^{n-1} Y_i$. Let $N(b) = 2^{3b-1}$ and let

$$U_d = \bigcup_{b \ge d} \{ Y : |\overline{Y}_{N(b)} - p| \ge 2^{-b} \}.$$

Then U_d is uniformly $\Sigma_1^0(p)$, and $\mu_p(U_d) \le 2^{-d}$, i.e., $\{U_d\}_{d \in \omega}$ is a μ_p -ML-test.

The idea of the proof is to use Chebyshev's inequality and the fact that the variance of a Bernoulli(p) random variable is bounded (by 1/4).

The essence of Statistics

Theorem

If Y is μ_p -random then $Y \ge_T p$.

Proof.

Let $\{U_d\}_{d\in\omega}$ be as in Proposition 15. Since *Y* is μ_p -random, $Y \notin \bigcap_d U_d$, so fix *d* with $Y \notin U_d$. Then for all $b \ge d$, we have

$$|\overline{Y}_{N(b)} - p| < 2^{-b}$$

Therefore, p is computable from Y.

There is a Hippocratic μ_p -test such that if Y passes this test then Y computes an accumulation point q of $\{\overline{Y}_n\}_{n\in\omega}$.

・ロト・西ト・ヨト・ヨト・日下 ひゃつ

Proof.

Let

$$V_d := \{Y : \exists a, b \ge d \ |\overline{Y}_{N(a)} - \overline{Y}_{N(b)}| \ge 2^{-a} + 2^{-b}\}$$

Then $\{V_d\}_{d\in\omega}$ is uniformly Σ_1^0 . Recall

$$U_d = \{Y : \exists b \ge d \ |\overline{Y}_{N(b)} - p| \ge 2^{-b}\}$$

We have $V_d \subseteq U_d$.¹ Therefore $\mu_p(V_d) \leq \mu_p(U_d) \leq 2^{-d}$ for all p. Thus if Y is Hippocrates μ_p -random then $Y \notin V_d$ for some d. This allows Yto compute the limit q of the sequence $\{Y_{N(b)}\}_{b \geq d}$.

$$\begin{split} & 1(\mathrm{If} \ |\overline{Y}_{N(b)} - p| < 2^{-b} \text{ for all } b \geq d \text{ then} \\ & |\overline{Y}_{N(a)} - \overline{Y}_{N(b)}| \leq |\overline{Y}_{N(a)} - p| + |p - \overline{Y}_{N(b)}| < 2^{-a} + 2^{-b} \text{ for all } a, b \geq d. \end{split}$$

If Y is Hippocrates μ_p -random then Y satisfies the Strong Law of Large Numbers for p.

Proof.

Let q_1 , q_2 be rational numbers with $q_1 . Let$

 $W_N := \{Y : \exists n \ge N \ \overline{Y}_n \le q_1\} \cup \{Y : \exists n \ge N \ \overline{Y}_n \ge q_2\}$

Then $\{W_N\}_{N\in\omega}$ is uniformly Σ_1^0 , and $\mu_p W_N \to 0$ effectively:

$$\mu_p = \{Y : \exists n \ge N \ \overline{Y}_n \le q_1\} \le \frac{1}{2|p-q_1|} \sum_{n \ge N} \frac{3}{n^2} - \frac{2}{n^3}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

If Y is Hippocrates μ_p -random then $Y \ge_T p$.

Proof.

By Theorem 17, *Y* computes the limit of a subsequence $\{Y_{N(b)}\}_{b\in\omega}$. By Theorem 19, this limit must be *p*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

For all p, if there is a Hippocratic μ_p -test $\{U_n\}_{n \in \omega}$ such that $\{X : X \not\geq_T p\} \subseteq \cap_n U_n$, then p is computable.

Proof.

Let $\{U_n\}_{n\in\omega}$ be such a test. U_1^c has a low member X_1 and a hyperimmune-free member X_2 . By assumption $X_1 \ge_T p$ and $X_2 \ge_T p$, so p is both low and hyperimmune-free, hence p is computable.

Corollary

There is no universal Hippocratic μ_p -test (unless p is computable).

Turning a $\Sigma_1^0(p)$ test into a Σ_1^0 test

Definition

Let $\{O_n\}_{n\in\omega}$ be a universal μ_p -test for all p, i.e. $\mu_p O_n^p \leq 2^{-(n)}$ for all p and $\{(p, X, n) : X \in O_n^p\}$ is Σ_1^0 .

Definition

Let Ψ_d denote the reduction from Theorem 17 under the assumption $Y \notin U_d$ there.

If Y is Hippocrates μ_p -random then Y is μ_p -random.

Proof. We have

$$\{Y:Y\not\in U_d\}\subseteq\{Y:\Psi_d^Y=p\}$$

 $\cup \{Y : Y \text{ not Hippocrates } \mu_p \text{-random.} \}$

Let

$$V_n^{(d)} := \left\{ X : \exists k \ \left(\Psi_d^X \upharpoonright k \downarrow \& \ X \in O_n^{\Psi_d^X \upharpoonright k} \right) \right\}$$

Then

$$V_n^{(d)} \subseteq O_n^p \cup \{Y : \Psi_d^Y \neq p\}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ◆豆 > ◆□ >

<ロト < 同ト < 三ト < 三ト < 三 ・ へのく

So

$$\mu_p(V_n^{(d)}) \le \mu_p(O_n^p) + \mu_p U_d \le 2^{-n} + 2^{-d}$$

Form the diagonal $W_n = V_n^{(n)}$; then $\{W_n\}_{n \in \omega}$ is a Hippocratic μ_p -test.

Suppose for contradiction that *Y* is Hippocrates μ_p -random but not μ_p -random. Then for all $n, Y \in O_n^p$. Fix *d* such that $Y \notin U_d$, so $\Psi_d^Y = p$. Then for all $n \ge d$, $\Psi_n^Y = p$. Then $Y \in \bigcap_{n \ge d} V_n^{(n)}$. So *Y* is not Hippocrates μ_p -random. []

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Part III: Permutations don't induce automorphisms of $\text{Aut}(\mathcal{D})$

Automorphisms

Question of Schweber

The Turing degrees

Two approaches:

- $\mathcal{D}_T = \omega^{\omega} / \equiv_T$
- $\mathcal{D}_T = 2^{\omega} / \equiv_T$

Same abstract structure, different notions of "inducing".

Automorphisms

Question of Schweber

Open problem

Question

Does (\mathcal{D}_T, \leq) have any nontrivial automorphisms?

- $\pi : \mathcal{D}_T \to \mathcal{D}_T$ is an automorphism if it is bijective and $\mathbf{x} \leq \mathbf{y} \iff \pi(\mathbf{x}) \leq \pi(\mathbf{y}).$
- $\pi : \mathcal{D}_T \to \mathcal{D}_T$ is *nontrivial* if $(\exists \mathbf{x})(\pi(\mathbf{x}) \neq \mathbf{x})$.

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Other degree structures

- The hyperdegrees \mathcal{D}_h have no nontrivial automorphisms (Slaman, Woodin ~1990).
- The Turing degrees \mathcal{D}_T have at most countably many (Slaman, Woodin \sim 1990).
- The many-one degrees \mathcal{D}_m have many automorphisms.

History of $Aut(D_T)$.

- 1980 Nerode and Shore show each automorphism equals the identity on some cone.
- 1990 Slaman and Woodin announce and circulate proofs that the cone can be lowered to 0'', and $Aut(D_T)$ is countable.
- 1999 Cooper sketches a construction of a nontrivial automorphism, but does not finish that project. Proposed automorphism π is induced by a continuous map on ω^{ω} .
- 2008 Outline of Slaman-Woodin results published.
- 2015 No automorphisms induced by permutations.

Inducing, from ω to 2^{ω} to \mathcal{D}_T

Definition

The pullback of $f:\omega\to\omega$ is $f^*:\omega^\omega\to\omega^\omega$ given by

 $f^*(A)(n) = A(f(n)).$

We often write $F = f^*$.

 $\pi([A]_T) = [F(A)]_T$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − 釣へ⊙

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Plausible that a permutation would induce an automorphism?

Theorem (Haught and Slaman 1993)

A permutation of ω (actually $2^{<\omega}$) can induce an automorphism of

 $(PTIME^A, \leq_{pT}).$

Caveat: the automorphism is probably not in the ideal itself.

Plausible that a permutation would induce an automorphism?

Theorem (Kent ~1967)

There exists a permutation f such that

- (i) for all recursively enumerable B, f(B) and f⁻¹(B) are recursively enumerable (and hence for all recursive A, f(A) and f⁻¹(A) are recursive);
- (ii) *f* is not recursive.

So a noncomputable f may map the Turing degree 0 to 0.

Definition

 $A \subset \omega$ is cohesive if for each recursively enumerable set W_e , either $A \cap W_e$ is finite or $A \cap (\omega \setminus W_e)$ is finite.

Proof.

Kent's permutation is just any permutation of a cohesive set (and the identity off the cohesive set).

・ロト・西ト・ヨト・ヨト・日下 ひゃつ

The case $D_T = \omega^{\omega} / \equiv_T$ is trivial

$$f^*(f^{-1})(n) = f^{-1}(f(n)) = n$$

so

$$f^{-1}\mapsto_{f^*}\mathsf{id}_\omega$$

 $\therefore f^*$ maps f^{-1} to a computable function $\therefore f^{-1}$ is computable $\therefore f$ is computable

< ロ > < 目 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

For 2^{ω} , one idea is: think of the elements of 2^{ω} as probabilities.

Automorphisms

Question of Schweber

Bernoulli measures

For each
$$n \in \omega$$
,

$$\mu_p(\{X : X(n) = 1\}) = p$$

$$\mu_p(\{X : X(n) = 0\}) = 1-p$$
and

$$X(0), X(1), X(2), \dots$$
are mutually
independent random
variables.

Jakob Bernoulli

Lebesgue Density

Ben Miller (2008) proved an extension of the Lebesgue Density Theorem to Bernoulli measures and beyond.

Definition

An ultrametric space is a metric space with metric d satisfying the strong triangle inequality

 $d(x,y) \le \max\{d(x,z), d(z,y)\}.$

Automorphisms

Question of Schweber

Lebesgue Density

Definition

A Polish space is a separable completely metrizable topological space.

Definition

In a metric space, $B(x, \varepsilon) = \{y : d(x, y) < \varepsilon\}.$

▲ロト ▲暦 ト ▲ 臣 ト ▲ 臣 - のへで

Lebesgue Density

Theorem (Lebesgue Density Theorem for a class including μ_p on 2^{ω})

Suppose that *X* is a Polish ultrametric space, μ is a probability measure on *X*, and $\mathcal{A} \subseteq X$ is Borel. Then $\lim_{\varepsilon \to 0} \frac{\mu(\mathcal{A} \cap B(x,\varepsilon))}{\mu(B(x,\varepsilon))} = 1$ for μ -almost every $x \in \mathcal{A}$.

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ○臣 - のへで

Automorphisms

Question of Schweber

Lebesgue Density

Definition

For any measure μ define the conditional measure by

$$\mu(\mathcal{A} \mid \mathcal{B}) = \frac{\mu(\mathcal{A} \cap \mathcal{B})}{\mu(\mathcal{B})}.$$

A measurable set \mathcal{A} has density d at X if

$$\lim_{n} \mu_p(\mathcal{A} \mid [X \upharpoonright n]) = d.$$

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ○臣 - のへで

Lebesgue Density

Let $\Xi(\mathcal{A}) = \{X : \mathcal{A} \text{ has density } 1 \text{ at } X\}.$

Corollary (Lebesgue Density Theorem for μ_p)

For Cantor space with Bernoulli(p) product measure μ_p , the Lebesgue Density Theorem holds:

$$\lim_{n \to \infty} \frac{\mu_p(\mathcal{A} \cap [x \upharpoonright n])}{\mu_p([x \upharpoonright n])} = 1$$

for μ -almost every $x \in A$. If A is measurable then so is $\Xi(A)$. Furthermore, the measure of the symmetric difference of A and $\Xi(A)$ is zero, so $\mu(\Xi(A)) = \mu(A)$.

Lebesgue Density

Proof.

Consider the ultrametric $d(x, y) = 2^{-\min\{n:x(n)\neq y(n)\}}$. It induces the standard topology on 2^{ω} .

Law of the Iterated Logarithm

Theorem (Khintchine 1924)

Let Y_n be independent, identically distributed random variables with means zero and unit variances. Let $S_n = Y_1 + \ldots Y_n$. Then

$$\limsup_{n \to \infty} \frac{S_n}{\sqrt{n \log \log n}} = \sqrt{2}, \qquad a.s.,$$

where log is the natural logarithm, lim sup denotes the limit superior, and "a.s." stands for "almost surely".

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Corollary (Kjos-Hanssen 2010)

Each μ_p -random computes p (layerwise!).

The idea now is that the permutation f of ω preserves something, namely μ_p for any p.

Automorphisms

Question of Schweber

Main theorem

Theorem

A permutation $f: \omega \to \omega$ induces an automorphism of \mathcal{D}_T iff f is computable.

Two proof steps.

First show f induces the trivial automorphism. Then use that to show f is computable.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Question of Schweber

Steps of the proof

Assume A is $F-\mu_p$ -ML-random.

- 1. $p \leq_T A$ (Law of the Iterated Logarithm)
- **2.** $F(p) \leq_T F(A)$
- **3.** $F(p) \leq_T A$
- 4. $F(p) \leq_T p$ (Lebesgue Density Theorem & Sacks/de Leeuw, Moore, Shannon, Shapiro)

Majority vote computation of F

If *F* induces the trivial automorphism of \mathcal{D}_T , we prove *F* is computable.

Notation: $A + n = A \cup \{n\}, A - n = A \setminus \{n\}.$

We use Lebesgue Density again, this time for p = 1/2.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We have $F(A) \leq_T A$. Fix Φ which works for $1 - \frac{\varepsilon}{2}$ measure many A.

$$F(A+n) \stackrel{\mathbb{P} \ge 1-\varepsilon}{=} \Phi^{A+n}$$
$$\mathbb{P} = 1 \left| \begin{array}{c} & \left| \therefore \mathbb{P} \ge 1-2\varepsilon \right. \\ F(A-n) \stackrel{\mathbb{P} \ge 1-\varepsilon}{=} \Phi^{A-n} \end{array} \right.$$

- = means equal
- - means a Hamming distance of 1.

A research program

What other kinds of automorphisms can we rule out?

Example

Invertible functions $F: 2^{\omega} \to 2^{\omega}$ that preserve a computably selected subsequence.

Example

Functions $F: 2^{\omega} \rightarrow 2^{\omega}$ that map each set to a subset of itself.

And so on.

Automorphisms

Question of Schweber

Noether's theorem \Rightarrow Rigidity of \mathcal{D}_T ?

Each symmetry has a conserved quantity.

Analogously we could hope that each automorphism has a conserved quantity (the way those induced by permutations of ω do) and hence is trivial.

Emmy Noether

Question of Schweber

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Part IV: $Aut(\mathcal{D})$ is \mathcal{O} -presentable

<ロト < 回 > < 三 > < 三 > < 三 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

On a question of Schweber

In 2013, Noah Schweber asked

Is there any countable group G which we know can't be isomorphic to Aut(D)?

Let p_i denote the *i*th prime number, and let \oplus be the recursive join on ω . Let \mathcal{O} be Kleene's Π_1^1 -complete set and \mathcal{O}' its Turing jump.

For any *B*, let G_B be the direct sum of $\mathbb{Z}/p_i\mathbb{Z}$ over all $i \in B \oplus \overline{B}$. So G_B is a countably infinite abelian group.

Theorem

Aut(\mathcal{D}) is not isomorphic to $G_{\mathcal{O}'}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

I'll show this by showing that

Theorem Aut(\mathcal{D}) is $\Delta_1^0(\mathcal{O})$ -presentable.

I.e., has a presentation which is recursive in \mathcal{O} , hence not $\geq_T B$. This will suffice because Richter, in her famous paper, showed that for all B, G_B has isomorphism type of degree $[B]_T$, i.e., all presentations of G_B have degree $\geq_T B$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Note that if $Aut(\mathcal{D})$ is finite then it is not isomorphic to G_B for any B, since the latter is countably infinite. So assume $Aut(\mathcal{D})$ is infinite.

Slaman and Woodin showed that each automorphism π of \mathcal{D} is represented by an arithmetic function in the sense that there is an n_0 such that for all π and all X, $\pi([X]_T) = [P(X)]_T$ where $P(X) = \{e\}(X^{(n_0)})$.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let *E* be the set of those *e* for which P_e given by $X \mapsto \{e\}^{X^{(n_0)}}$ is an arithmetic representation of some automorphism. We claim that the set *E* is Π_1^1 : First, let *F* be the Π_1^1 set of all *e* for which

$$\forall A(P_e(A) \text{ is total}), \tag{1}$$

$$\forall A \forall B (A \leq_T B \to P_e(A) \leq_T P_e(B)), \text{ and}$$
(2)

$$\forall A \forall B(P(A) \equiv_T P(B) \to A \equiv_T B).$$
(3)

Then

$$E = \{e : e \in F \text{ and }$$

$$(\exists d \in F) \forall A(P_d(P_e(A)) \equiv_T A \text{ and } P_d(P_e(A)) \equiv_T A) \}.$$

The multiplication is given by defining * by

$$P_{e_1*e_2} = P_{e_1} \circ P_{e_2}$$

which is equivalent to

$$\forall A \forall B \forall C (B = P_{e_2}(A) \text{ and } C = P_{e_1}(B) \rightarrow C = P_{e_1 \ast e_2}(A))$$

We also have to mod out by equality of the automorphisms induced by e_1 and e_2 , which we check by:

$$\forall A(P_{e_1}(A) \equiv_T P_{e_2}(A))$$

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ● 日 ● の へ ()・

< ロ > < 同 > < 三 > < 三 > 、 三 > の < ○</p>

Overall, we get a subset of ω recursive in the Π_1^1 -complete set Kleene's \mathcal{O} , with an \mathcal{O} -recursive group operation. This is then isomorphic to all of ω with an \mathcal{O} -recursive group operation, as desired.

Automorphisms

Question of Schweber

Mahalo for your attention

500