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• Part I: Structure of the Turing degrees
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The Turing degrees

Definition 1
For A,B ⊆ ω, we say that A ≤T B if A can be computed from
B. If A ≤T B and B ≤T A then we say that A ≡T B. If
a = {X |X ≡T A} denotes the Turing degree of A and we
define a ≤ b↔ A ≤T B, then D = {a |A ⊆ ω} is the upper
semilattice of Turing degrees.
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L.u.b., not always g.l.b.

The least upper bound of two tasks in terms of difficulty should
be to do them both.
The greatest lower bound – it is not so clear what that would be.
This is reflected in the fact that the Turing degrees form an
upper semilattice which is not a lattice, i.e. any two degrees
have a l.u.b. but some do not have a g.l.b.
Here the task corresponding to a degree a is to answer
questions of the form “x ∈ A?”.
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Automorphisms, subalgebras, ideals

Note that 0 and ≤ are definable from the l.u.b. operation ∨.
Shore and Slaman (1999) showed that so is the map a 7→ a′.
Here are a few natural things we should know about the
algebra 〈D,∨〉, in order to say that we understand it.

Automorphisms - bijections π : D → D such that
π(x ∨ y) = π(x) ∨ π(y).

Subalgebras - subsets of D closed under ∨.
Ideals - sets I ⊆ D that are “ideal elements” in the sense

that if we write a ≤ I for a ∈ I, then
a ≤ b ≤ I ⇒ a ≤ I, and
a ≤ I, b ≤ I ⇒ a ∨ b ≤ I.

Groszek and Slaman (1983) showed that isomorphism types of
subalgebras and ideals are not determined by ZFC. Open
problem: Does 〈D,∨〉 have any nontrivial automorphism?



Turing degrees Hippocratic randomness Automorphisms Question of Schweber

History of ideals

Given a cardinal κ, let P (κ)⇔ Ideals of D size ≤ κ realize all
conceivable isomorphism types.

’54 Kleene-Post ` P (1) (trivial)
’56 Spector ` P (2) (forcing with trees)
’65 Titgemeyer ` P (3)

’68 Lachlan ` P (4)

’69 Lerman ` P (5)

’71 Lerman ` (∀κ < ℵ0)P (κ) (homogeneity)
’76 Lachlan-Lebeuf ` P (ℵ0) (embeddings)
’83 Groszek-Slaman: ZFC6` P (2ℵ0)

’86 Abraham-Shore ` P (ℵ1)
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Σ1-presentable semilattices
We say that an upper semilattice L is Σ0

1-presentable if there
exists a transitive and reflexive Σ0

1 relation ≤ on ω and a ∆0
1

binary operation ∨ on ω such that if we mod out by
a ≡ b⇔ a ≤ b& b ≤ a then we get L with its order and l.u.b.
operation. Similarly we get a notion of Σ0

1(a)-presentable for
any Turing degree a.

Lemma 2
[a,b] is Σ0

3(b)-presentable, for any Turing degrees a ≤ b.

Proof sketch: a ≤ b if there exists e such that for all x, {e}B(x)
halts and equals A(x). A representative of the Turing degree
a ∨ b is given by A⊕B := {2x |x ∈ A} ∪ {2x+ 1 |x ∈ B}. And
{e | {e}B is total} is computable from B′′. []
For many a, b this is also best possible (e.g. for b ≥ 0′). So in
describing D we seem to have to use D itself!
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Some useful tools

Theorem 3 (Friedberg 1957)

If x ≥ 0′ then there exists a with a′ = x.

Theorem 4 (Jockusch, Posner 1978)

If a ≤ 0′ and [0,a] is a lattice then a′′ = 0′′ and hence [0,a] is
Σ0

3-presentable.



Turing degrees Hippocratic randomness Automorphisms Question of Schweber

Application to automorphisms

Theorem 5
Let a ≥ 0′′ and let L be a lattice with 0 and 1. The following are
equivalent:

1. L is Σ0
1(a)-presentable.

2. L ∼= [0,g] for some g′′ ≤ a.

But the collection of Σ0
1(a)-presentable L determines a. This

gives a “reason” why the following result is true:

Corollary 6 (Slaman, Woodin)

Every automorphism of 〈D,≤,′ 〉 is the identity above 0′′.
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• Part II: Randomness for Bernoulli measures
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Randomness

Definition
A test for
µ-randomness is a
uniformly Σ0

1(µ)
sequence {Un}n∈ω
with µ(Un) ≤ 2−n.

If X passes all
µ-randomness tests
then X is µ-random.

Martin-Löf
randomness for
arbitrary measures on
2ω (Reimann and
Slaman).
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Hippocratic randomness

Definition
A test for Hippocratic
µ-randomness is a
uniformly Σ0

1

sequence {Un}n∈ω
with µ(Un) ≤ 2−n.

If X passes all
Hippocratic tests then
X is Hippocrates
µ-random.

Like Hippocrates we are
not consulting the oracle
µ but rather looking for
“natural causes”.
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Bernoulli measures

For each n ∈ ω,

µp({X : X(n) = 1}) = p

µp({X : X(n) = 0}) = 1− p

and X(0), X(1), X(2), . . . are mutually independent random
variables.
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Proposition

Consider an i.i.d. sequence Y = {Yn}n∈ω of Bernoulli(p)
random variables, and the sample average Y n = 1

n

∑n−1
i=0 Yi.

Let N(b) = 23b−1 and let

Ud =
⋃
b≥d
{Y : |Y N(b) − p| ≥ 2−b}.

Then Ud is uniformly Σ0
1(p), and µp(Ud) ≤ 2−d, i.e., {Ud}d∈ω is a

µp-ML-test.

The idea of the proof is to use Chebyshev’s inequality and the
fact that the variance of a Bernoulli(p) random variable is
bounded (by 1/4).
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The essence of Statistics

Theorem
If Y is µp-random then Y ≥T p.

Proof.
Let {Ud}d∈ω be as in Proposition 15. Since Y is µp-random,
Y 6∈ ∩dUd, so fix d with Y 6∈ Ud. Then for all b ≥ d, we have

|Y N(b) − p| < 2−b

Therefore, p is computable from Y .
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Theorem
There is a Hippocratic µp-test such that if Y passes this test
then Y computes an accumulation point q of {Y n}n∈ω.
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Proof.
Let

Vd := {Y : ∃a, b ≥ d |Y N(a) − Y N(b)| ≥ 2−a + 2−b}

Then {Vd}d∈ω is uniformly Σ0
1. Recall

Ud = {Y : ∃b ≥ d |Y N(b) − p| ≥ 2−b}

We have Vd ⊆ Ud. 1

Therefore µp(Vd) ≤ µp(Ud) ≤ 2−d for all p. Thus if Y is
Hippocrates µp-random then Y 6∈ Vd for some d. This allows Y
to compute the limit q of the sequence {YN(b)}b≥d.

1
(If |Y N(b) − p| < 2−b for all b ≥ d then

|Y N(a) − Y N(b)| ≤ |Y N(a) − p| + |p− Y N(b)| < 2−a + 2−b for all a, b ≥ d.)
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Theorem
If Y is Hippocrates µp-random then Y satisfies the Strong Law
of Large Numbers for p.

Proof.
Let q1, q2 be rational numbers with q1 < p < q2. Let

WN := {Y : ∃n ≥ N Y n ≤ q1} ∪ {Y : ∃n ≥ N Y n ≥ q2}

Then {WN}N∈ω is uniformly Σ0
1, and µpWN → 0 effectively:

µp = {Y : ∃n ≥ N Y n ≤ q1} ≤
1

2|p− q1|
∑
n≥N

3

n2
− 2

n3
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Theorem
If Y is Hippocrates µp-random then Y ≥T p.

Proof.
By Theorem 17, Y computes the limit of a subsequence
{YN(b)}b∈ω. By Theorem 19, this limit must be p.
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Theorem
For all p, if there is a Hippocratic µp-test {Un}n∈ω such that
{X : X 6≥T p} ⊆ ∩nUn, then p is computable.

Proof.
Let {Un}n∈ω be such a test. U c1 has a low member X1 and a
hyperimmune-free member X2. By assumption X1 ≥T p and
X2 ≥T p, so p is both low and hyperimmune-free, hence p is
computable.

Corollary

There is no universal Hippocratic µp-test (unless p is
computable).
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Turning a Σ0
1(p) test into a Σ0

1 test

Definition
Let {On}n∈ω be a universal µp-test for all p, i.e. µpO

p
n ≤ 2−(n)

for all p and {(p,X, n) : X ∈ Opn} is Σ0
1.

Definition
Let Ψd denote the reduction from Theorem 17 under the
assumption Y 6∈ Ud there.
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Theorem
If Y is Hippocrates µp-random then Y is µp-random.

Proof. We have

{Y : Y 6∈ Ud} ⊆ {Y : ΨY
d = p}

∪{Y : Y not Hippocrates µp-random.}

Let
V (d)
n :=

{
X : ∃k

(
ΨX
d � k ↓ & X ∈ OΨX

d �k
n

)}
Then

V (d)
n ⊆ Opn ∪ {Y : ΨY

d 6= p}
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So
µp(V

(d)
n ) ≤ µp(Opn) + µpUd ≤ 2−n + 2−d

Form the diagonal Wn = V
(n)
n ; then {Wn}n∈ω is a Hippocratic

µp-test.
Suppose for contradiction that Y is Hippocrates µp-random but
not µp-random. Then for all n, Y ∈ Opn. Fix d such that Y 6∈ Ud,
so ΨY

d = p. Then for all n ≥ d, ΨY
n = p. Then Y ∈ ∩n≥dV

(n)
n . So

Y is not Hippocrates µp-random. []
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• Part III: Permutations don’t induce automorphisms of
Aut(D)
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The Turing degrees

Two approaches:
• DT = ωω/ ≡T
• DT = 2ω/ ≡T

Same abstract structure, different notions of “inducing”.
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Open problem

Question
Does (DT ,≤) have any nontrivial automorphisms?

• π : DT → DT is an automorphism if it is bijective and
x ≤ y⇐⇒ π(x) ≤ π(y).

• π : DT → DT is nontrivial if (∃x)(π(x) 6= x).
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Other degree structures

• The hyperdegrees Dh have no nontrivial automorphisms
(Slaman, Woodin ∼1990).

• The Turing degrees DT have at most countably many
(Slaman, Woodin ∼1990).

• The many-one degrees Dm have many automorphisms.
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History of Aut(DT ).

1980 Nerode and Shore show each automorphism equals the
identity on some cone.

1990 Slaman and Woodin announce and circulate proofs that
the cone can be lowered to 0′′, and Aut(DT ) is countable.

1999 Cooper sketches a construction of a nontrivial
automorphism, but does not finish that project. Proposed
automorphism π is induced by a continuous map on ωω.

2008 Outline of Slaman-Woodin results published.
2015 No automorphisms induced by permutations.
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Inducing, from ω to 2ω to DT

Definition
The pullback of f : ω → ω is f∗ : ωω → ωω given by

f∗(A)(n) = A(f(n)).

We often write F = f∗.

π([A]T ) = [F (A)]T
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Plausible that a permutation would induce an
automorphism?

Theorem (Haught and Slaman 1993)

A permutation of ω (actually 2<ω) can induce an automorphism
of

(PTIMEA,≤pT ).

Caveat: the automorphism is probably not in the ideal itself.
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Plausible that a permutation would induce an
automorphism?

Theorem (Kent ∼1967)

There exists a permutation f such that
(i) for all recursively enumerable B, f(B) and f−1(B) are

recursively enumerable (and hence for all recursive A,
f(A) and f−1(A) are recursive);

(ii) f is not recursive.

So a noncomputable f may map the Turing degree 0 to 0.
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Definition
A ⊂ ω is cohesive if for each recursively enumerable set We,
either A ∩We is finite or A ∩ (ω \We) is finite.

Proof.
Kent’s permutation is just any permutation of a cohesive set
(and the identity off the cohesive set).
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The case DT = ωω/ ≡T is trivial

f∗(f−1)(n) = f−1(f(n)) = n

so
f−1 7→f∗ idω

∴ f∗ maps f−1 to a computable function ∴ f−1 is computable ∴
f is computable
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For 2ω, one idea is: think of the elements of 2ω as probabilities.
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Bernoulli measures

For each n ∈ ω,

µp({X : X(n) = 1}) = p

µp({X : X(n) = 0}) = 1−p

and
X(0), X(1), X(2), . . .
are mutually
independent random
variables. Jakob Bernoulli
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Lebesgue Density

Ben Miller (2008) proved an extension of the Lebesgue Density
Theorem to Bernoulli measures and beyond.

Definition
An ultrametric space is a metric space with metric d satisfying
the strong triangle inequality

d(x, y) ≤ max{d(x, z), d(z, y)}.
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Lebesgue Density

Definition
A Polish space is a separable completely metrizable topological
space.

Definition
In a metric space, B(x, ε) = {y : d(x, y) < ε}.
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Lebesgue Density

Theorem (Lebesgue Density Theorem for a class
including µp on 2ω)

Suppose that X is a Polish ultrametric space, µ is a probability
measure on X, and A ⊆ X is Borel. Then
limε→0

µ(A∩B(x,ε))
µ(B(x,ε)) = 1 for µ-almost every x ∈ A.
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Lebesgue Density

Definition
For any measure µ define the conditional measure by

µ(A | B) =
µ(A ∩ B)

µ(B)
.

A measurable set A has density d at X if

lim
n
µp(A | [X � n]) = d.
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Lebesgue Density

Let Ξ(A) = {X : A has density 1 at X}.

Corollary (Lebesgue Density Theorem for µp)

For Cantor space with Bernoulli(p) product measure µp, the
Lebesgue Density Theorem holds:

lim
n→∞

µp(A ∩ [x � n])

µp([x � n])
= 1

for µ-almost every x ∈ A.
If A is measurable then so is Ξ(A). Furthermore, the measure
of the symmetric difference of A and Ξ(A) is zero, so
µ(Ξ(A)) = µ(A).
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Lebesgue Density

Proof.
Consider the ultrametric d(x, y) = 2−min{n:x(n)6=y(n)}. It induces
the standard topology on 2ω.



Turing degrees Hippocratic randomness Automorphisms Question of Schweber

Law of the Iterated Logarithm

Theorem (Khintchine 1924)

Let Yn be independent, identically distributed random variables
with means zero and unit variances. Let Sn = Y1 + . . . Yn. Then

lim sup
n→∞

Sn√
n log logn

=
√

2, a.s.,

where log is the natural logarithm, lim sup denotes the limit
superior, and “a.s.” stands for “almost surely”.
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Corollary (Kjos-Hanssen 2010)

Each µp-random computes p (layerwise!).

The idea now is that the permutation f of ω preserves
something, namely µp for any p.



Turing degrees Hippocratic randomness Automorphisms Question of Schweber

Main theorem

Theorem
A permutation f : ω → ω induces an automorphism of DT iff f
is computable.

Two proof steps.

First show f induces the trivial automorphism. Then use that to
show f is computable.
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Steps of the proof
Assume A is F -µp-ML-random.

A F (A)

p

F (p)

1.

3.
2.

4.

1. p ≤T A (Law of the Iterated Logarithm)
2. F (p) ≤T F (A)

3. F (p) ≤T A
4. F (p) ≤T p (Lebesgue Density Theorem & Sacks/de

Leeuw, Moore, Shannon, Shapiro)
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Majority vote computation of F

If F induces the trivial automorphism of DT , we prove F is
computable.
Notation: A+ n = A ∪ {n}, A− n = A \ {n}.
We use Lebesgue Density again, this time for p = 1/2.
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We have F (A) ≤T A. Fix Φ which works for 1− ε
2 measure

many A.

F (A+ n) ΦA+n

F (A− n) ΦA−n

P≥1−ε

P=1 ∴P≥1−2ε

P≥1−ε

• = means equal
• − means a Hamming distance of 1.
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A research program

What other kinds of automorphisms can we rule out?

Example

Invertible functions F : 2ω → 2ω that preserve a computably
selected subsequence.

Example

Functions F : 2ω → 2ω that map each set to a subset of itself.

And so on.
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Noether’s theorem⇒ Rigidity of DT?

Each symmetry has
a conserved
quantity.
Analogously we could
hope that each
automorphism has a
conserved quantity
(the way those
induced by
permutations of ω do)
and hence is trivial.

Emmy Noether
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• Part IV: Aut(D) is O-presentable
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On a question of Schweber

In 2013, Noah Schweber asked
Is there any countable group G which we know can’t
be isomorphic to Aut(D)?
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Let pi denote the ith prime number, and let ⊕ be the recursive
join on ω. Let O be Kleene’s Π1

1-complete set and O′ its Turing
jump.
For any B, let GB be the direct sum of Z/piZ over all i ∈ B ⊕B.
So GB is a countably infinite abelian group.

Theorem
Aut(D) is not isomorphic to GO′ .
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I’ll show this by showing that

Theorem
Aut(D) is ∆0

1(O)-presentable.

I.e., has a presentation which is recursive in O, hence not
≥T B. This will suffice because Richter, in her famous paper,
showed that for all B, GB has isomorphism type of degree
[B]T , i.e., all presentations of GB have degree ≥T B.
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Note that if Aut(D) is finite then it is not isomorphic to GB for
any B, since the latter is countably infinite. So assume Aut(D)
is infinite.
Slaman and Woodin showed that each automorphism π of D is
represented by an arithmetic function in the sense that there is
an n0 such that for all π and all X, π([X]T ) = [P (X)]T where
P (X) = {e}(X(n0)).
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Let E be the set of those e for which Pe given by X 7→ {e}X(n0)

is an arithmetic representation of some automorphism.
We claim that the set E is Π1

1: First, let F be the Π1
1 set of all e

for which
∀A(Pe(A) is total), (1)

∀A∀B(A ≤T B → Pe(A) ≤T Pe(B)), and (2)

∀A∀B(P (A) ≡T P (B)→ A ≡T B). (3)
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Then
E = {e : e ∈ F and

(∃d ∈ F )∀A(Pd(Pe(A)) ≡T A and Pd(Pe(A)) ≡T A)}.

The multiplication is given by defining ∗ by

Pe1∗e2 = Pe1 ◦ Pe2

which is equivalent to

∀A∀B∀C(B = Pe2(A) and C = Pe1(B)→ C = Pe1∗e2(A))

We also have to mod out by equality of the automorphisms
induced by e1 and e2, which we check by:

∀A(Pe1(A) ≡T Pe2(A))
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Overall, we get a subset of ω recursive in the Π1
1-complete set

Kleene’s O, with an O-recursive group operation. This is then
isomorphic to all of ω with an O-recursive group operation, as
desired.
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Mahalo for your attention

http://math.hawaii.edu/wordpress/ccr-2016/
http://math.hawaii.edu/wordpress/ccr-2016/
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