Measuring Complexity of Maximal Matchings of Graphs

Oscar Levin

University of Northern Colorado

Computability Theory and its Applications University of Waterloo, 2018

Joint work with Stephen Flood, Matthew Jura, and Tyler Markkanen.

Not every graph contains a perfect matching.

Not every graph contains a perfect matching.

Theorem (Steffens)

Every graph contains a maximal matching.

Not every graph contains a perfect matching.

Theorem (Steffens)

Every graph contains a maximal matching.

Definition

A matching *M* is (weakly) maximal provided there is no matching *N* with *M* ⊂ *N*.

Not every graph contains a perfect matching.

Theorem (Steffens)

Every graph contains a maximal matching.

Definition

- A matching *M* is (weakly) maximal provided there is no matching *N* with *M* ⊂ *N*.
- A matching *M* is *maximal* provided there is no matching *N* with supp(*M*) ⊂ supp(*N*).
 (supp(*M*) is the set of vertices incident to *M*.)

Not every graph contains a perfect matching.

Theorem (Steffens)

Every graph contains a maximal matching.

Definition

- A matching *M* is (weakly) maximal provided there is no matching *N* with *M* ⊂ *N*.
- A matching *M* is *maximal* provided there is no matching *N* with supp(*M*) ⊂ supp(*N*).
 (supp(*M*) is the set of vertices incident to *M*.)

How can you augment a matching?

How can you augment a matching?

Definition

An *M*-alternating path has edges alternating in and out of *M*.

An *M*-augmenting path is an *M*-alternating path that starts with an unmatched vertex and either ends in another unmatched vertex or is infinite.

How can you augment a matching?

Definition

An *M*-alternating path has edges alternating in and out of *M*.

An *M*-augmenting path is an *M*-alternating path that starts with an unmatched vertex and either ends in another unmatched vertex or is infinite.

How can you augment a matching?

Definition

An *M*-alternating path has edges alternating in and out of *M*.

An *M*-augmenting path is an *M*-alternating path that starts with an unmatched vertex and either ends in another unmatched vertex or is infinite.

How can you augment a matching?

Definition

An *M*-alternating path has edges alternating in and out of *M*.

An *M*-augmenting path is an *M*-alternating path that starts with an unmatched vertex and either ends in another unmatched vertex or is infinite.

How can you augment a matching?

Definition

An *M*-alternating path has edges alternating in and out of *M*.

An *M*-augmenting path is an *M*-alternating path that starts with an unmatched vertex and either ends in another unmatched vertex or is infinite.

How can you augment a matching?

Definition

An *M*-alternating path has edges alternating in and out of *M*.

An *M*-augmenting path is an *M*-alternating path that starts with an unmatched vertex and either ends in another unmatched vertex or is infinite.

How can you augment a matching?

Definition

An *M*-alternating path has edges alternating in and out of *M*.

An *M*-augmenting path is an *M*-alternating path that starts with an unmatched vertex and either ends in another unmatched vertex or is infinite.

How can you augment a matching?

Definition

An *M*-alternating path has edges alternating in and out of *M*.

An *M*-augmenting path is an *M*-alternating path that starts with an unmatched vertex and either ends in another unmatched vertex or is infinite.

How can you augment a matching?

Definition

An *M*-alternating path has edges alternating in and out of *M*.

An *M*-augmenting path is an *M*-alternating path that starts with an unmatched vertex and either ends in another unmatched vertex or is infinite.

How can you augment a matching?

Definition

An *M*-alternating path has edges alternating in and out of *M*.

An *M*-augmenting path is an *M*-alternating path that starts with an unmatched vertex and either ends in another unmatched vertex or is infinite.

How can you augment a matching?

Definition

An *M*-alternating path has edges alternating in and out of *M*.

An *M*-augmenting path is an *M*-alternating path that starts with an unmatched vertex and either ends in another unmatched vertex or is infinite.

A graph has a perfect matching iff for any matching *M* and unmatched *v*, there is an *M*-augmenting path starting at *v*.

A graph has a perfect matching iff for any matching *M* and unmatched *v*, there is an *M*-augmenting path starting at *v*.

∧ Condition (A)

A graph has a perfect matching iff for any matching *M* and unmatched *v*, there is an *M*-augmenting path starting at *v*.

∧ Condition (A)

Corollary Every graph has a maximal matching.

A graph has a perfect matching iff for any matching *M* and unmatched *v*, there is an *M*-augmenting path starting at *v*.

∧ Condition (A)

Corollary Every graph has a maximal matching.

Really, maximality seems to be a corollary to the proof of this theorem.

Use Reverse Mathematics to understand the strength of both of these theorems.

Use Reverse Mathematics to understand the strength of both of these theorems.

The plan:

1. Complete classification for locally finite graphs.

Use Reverse Mathematics to understand the strength of both of these theorems.

The plan:

- 1. Complete classification for locally finite graphs.
- 2. Get a sense why the general case is much much much much harder to classify (probably).

Definition

- A graph is *locally finite* provided every vertex has finite degree.
- A graph is *bounded* provided there is a function h : V → N s.t. ∀x, y ∈ V({x, y} ∈ E → h(x) ≥ y).

Definition

- A graph is *locally finite* provided every vertex has finite degree.
- A graph is *bounded* provided there is a function h : V → N s.t. ∀x, y ∈ V({x, y} ∈ E → h(x) ≥ y).

Think: bounded = highly computable.

Theorem

The following are equivalent over RCA₀:

- 1. Every locally finite graph has a maximal matching.
- 2. A locally finite graph has a perfect matching iff it satisfies condition (A).
- **3**. ACA₀.

Theorem

The following are equivalent over RCA_0 :

- 1. Every locally finite graph has a maximal matching.
- 2. A locally finite graph has a perfect matching iff it satisfies condition (A).
- **3**. ACA₀.

Theorem

The following are equivalent over RCA₀:

- 1. Every bounded graph has a maximal matching.
- 2. A bounded graph has a perfect matching iff it satisfies condition (A).
- **3.** WKL₀.

Idea: Build a tree whose paths give perfect matchings.

Idea: Build a tree whose paths give perfect matchings.

 $\langle a_0, a_1, \ldots, a_n \rangle \in T$ iff $\{(0, a_0), (1, a_1), \ldots, (n, a_n)\}$ is a matching.

Idea: Build a tree whose paths give perfect matchings.

$$(a_0, a_1, \dots, a_n) \in T$$
 iff $\{(0, a_0), (1, a_1), \dots, (n, a_n)\}$ is a matching.

Condition (A) guarantees the tree will be infinite.
Steffens for locally finite graphs implies ACA₀:

Steffens for locally finite graphs implies ACA₀:

Steffens for locally finite graphs implies ACA₀:

Steffens for locally finite graphs implies ACA₀:

Steffens for locally finite graphs implies ACA₀:

Why is this messy?

The problem: To use a larger matching, you must abandon a smaller matching.

A matching *M* is *independent* provided there is no **proper** *M*-augmenting path starting at a vertex unmatched by *M*.

A subgraph is *independent* provided it has a perfect matching, and all perfect matchings are independent.

A matching *M* is *independent* provided there is no **proper** *M*-augmenting path starting at a vertex unmatched by *M*.

A subgraph is *independent* provided it has a perfect matching, and all perfect matchings are independent.

Lemma

Every graph has has a maximal independent matching.

A matching *M* is *independent* provided there is no **proper** *M*-augmenting path starting at a vertex unmatched by *M*.

A subgraph is *independent* provided it has a perfect matching, and all perfect matchings are independent.

Lemma Every graph has has a maximal independent matching.

Proof. Zorn's lemma.

A matching *M* is *independent* provided there is no **proper** *M*-augmenting path starting at a vertex unmatched by *M*.

A subgraph is *independent* provided it has a perfect matching, and all perfect matchings are independent.

Lemma

Every graph has has a maximal independent matching.

Proof.

Work in a countably coded β_2 -model; build an increasing sequence of independent matchings; argue that the union is maximal.

A matching *M* is *independent* provided there is no **proper** *M*-augmenting path starting at a vertex unmatched by *M*.

A subgraph is *independent* provided it has a perfect matching, and all perfect matchings are independent.

Lemma

Every graph has has a maximal independent matching.

Proof.

Work in a countably coded β_2 -model; build an increasing sequence of independent matchings; argue that the union is maximal.

Note: this is a proof in Π_2^1 -CA.

A proof of Steffens' theorem

Suppose G satisfies condition (A)

► Take a maximal independent matching *M*.

- ► Take a maximal independent matching *M*.
- If there is some v not matched, take a maximal independent matching M' of G \ (V(M) ∪ {v}).

- ► Take a maximal independent matching *M*.
- If there is some v not matched, take a maximal independent matching M' of G \ (V(M) ∪ {v}).
- Use an M'-augmenting path starting at v to get a matching that includes M and v, and whose complement satisfies condition (A).

- ► Take a maximal independent matching *M*.
- If there is some v not matched, take a maximal independent matching M' of G \ (V(M) ∪ {v}).
- Use an M'-augmenting path starting at v to get a matching that includes M and v, and whose complement satisfies condition (A).
- Repeat.

- ► Take a maximal independent matching *M*.
- If there is some v not matched, take a maximal independent matching M' of G \ (V(M) ∪ {v}).
- Use an M'-augmenting path starting at v to get a matching that includes M and v, and whose complement satisfies condition (A).
- Repeat.

- ► Take a maximal independent matching *M*.
- If there is some v not matched, take a maximal independent matching M' of G \ (V(M) ∪ {v}).
- Use an M'-augmenting path starting at v to get a matching that includes M and v, and whose complement satisfies condition (A).
- Repeat.

Note: we potentially need the maximal independent subgraph lemma infinitely often,...

- ► Take a maximal independent matching *M*.
- If there is some v not matched, take a maximal independent matching M' of G \ (V(M) ∪ {v}).
- Use an M'-augmenting path starting at v to get a matching that includes M and v, and whose complement satisfies condition (A).
- Repeat.

Note: we potentially need the maximal independent subgraph lemma infinitely often,.....but actually, exactly once.

A proof of maximality

Take a maximal independent subgraph H of G.

A proof of maximality

Take a maximal independent subgraph H of G.

Let N be the set of vertices not in H but adjacent only to vertices in H.

Take a maximal independent subgraph H of G.

Let N be the set of vertices not in H but adjacent only to vertices in H.

 $G \setminus (H \cup N)$ satisfies condition (A), so by Steffens, has a perfect matching.

Take a maximal independent subgraph H of G.

Let N be the set of vertices not in H but adjacent only to vertices in H.

 $G \setminus (H \cup N)$ satisfies condition (A), so by Steffens, has a perfect matching.

But the perfect matching would be independent in G, giving a larger independent matching. So any perfect matching of H is a maximal matching of G.

Lemma

Given any tree T, there is a tree T' such that T has an infinite path iff T' has a perfect matching.
Lemma

Given any tree T, there is a tree T' such that T has an infinite path iff T' has a perfect matching.

Proposition Maximality implies Π_1^1 -CA₀. Steffens implies Σ_1^1 -AC₀.

Lemma

Given any tree T, there is a tree T' such that T has an infinite path iff T' has a perfect matching.

Proposition Maximality implies Π_1^1 -CA₀. Steffens implies Σ_1^1 -AC₀.

Lemma

Given any tree T, there is a tree T' such that T has an infinite path iff T' has a perfect matching.

Proposition Maximality implies Π_1^1 -CA₀. Steffens implies Σ_1^1 -AC₀.

For any computable ordinal α , there is a computable graph *G* that satisfies condition (A), any perfect matching of which computes $\mathbf{0}^{(\alpha)}$.

For any computable ordinal α , there is a computable graph *G* that satisfies condition (A), any perfect matching of which computes $\mathbf{0}^{(\alpha)}$.

This would be enough to prove ATR₀, except we don't know how to prove *G* satisfies condition (A) without using Π_1^1 -Tl₀. (Σ_1^1 -DC₀)

The current picture

The End

Thanks!