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Not every graph contains a perfect matching.

Theorem (Steffens)
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Improving matchings

How can you augment a matching?

. . .

Definition
An M-alternating path has edges alternating in and out of M.

An M-augmenting path is an M-alternating path that starts with
an unmatched vertex and either ends in another unmatched
vertex or is infinite.

If there is an M-augmenting path starting at v, then there is a
matching M′ that improves the support of M to include v (and
possibly one other vertex).
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↖ Condition (A)

Corollary
Every graph has a maximal matching.

Really, maximality seems to be a corollary to the proof of this
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2. Get a sense why the general case is much much much
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I A graph is bounded provided there is a function h : V → N

s.t. ∀x, y ∈ V({x, y} ∈ E → h(x) ≥ y).

Think: bounded = highly computable.
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Idea: Build a tree whose paths give perfect matchings.

〈a0, a1, . . . , an〉 ∈ T iff {(0, a0), (1, a1), . . . , (n, an)} is a matching.

Condition (A) guarantees the tree will be infinite.
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A matching M is independent provided there is no proper
M-augmenting path starting at a vertex unmatched by M.

A subgraph is independent provided it has a perfect matching,
and all perfect matchings are independent.

Lemma
Every graph has has a maximal independent matching.

Proof.

Work in a countably coded β2-model; build an increasing
sequence of independent matchings; argue that the union is
maximal.
Note: this is a proof in Π1

2-CA.
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A proof of Steffens’ theorem

Suppose G satisfies condition (A)
I Take a maximal independent matching M.

I If there is some v not matched, take a maximal
independent matching M′ of G \ (V(M) ∪ {v}).

I Use an M′-augmenting path starting at v to get a matching
that includes M and v, and whose complement satisfies
condition (A).

I Repeat.

Note: we potentially need the maximal independent subgraph
lemma infinitely often,. . . . . . but actually, exactly once.
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Take a maximal independent subgraph H of G.

Let N be the set of vertices not in H but adjacent only to
vertices in H.

G \ (H ∪ N) satisfies condition (A), so by Steffens, has a perfect
matching.

But the perfect matching would be independent in G, giving a
larger independent matching. So any perfect matching of H is a
maximal matching of G.
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path iff T ′ has a perfect matching.
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For any computable ordinal α, there is a computable graph G
that satisfies condition (A), any perfect matching of which
computes 0(α).

This would be enough to prove ATR0, except we don’t know
how to prove G satisfies condition (A) without using Π1

1-TI0.
(Σ1
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The current picture

Π1
2-CA+

0 Maximal Matching

Π1
2-CA0

Max IndΠ1
1-CA0

ATR0

Steffens

Σ1
1-AC0

ACA0 Locally Finite Steffens & Maximality

WKL0 Bounded Steffens & Maximality

+Π1
1-TI0



The End

Thanks!
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