Measuring Complexity of Maximal Matchings of Graphs

Oscar Levin

University of Northern Colorado

Computability Theory and its Applications
University of Waterloo, 2018

Joint work with Stephen Flood, Matthew Jura, and Tyler Markkanen.
Definition
A matching in a graph $G = (V, E)$ is a subset $M \subseteq E$ for which each vertex is incident to at most one edge in M. A matching is perfect if every vertex is incident to exactly one edge in M.
Definition
A matching in a graph $G = (V, E)$ is a subset $M \subseteq E$ for which each vertex is incident to at most one edge in M. A matching is perfect if every vertex is incident to exactly one edge in M.
Definition
A matching in a graph $G = (V, E)$ is a subset $M \subseteq E$ for which each vertex is incident to at most one edge in M. A matching is perfect if every vertex is incident to exactly one edge in M.
Definition
A matching in a graph $G = (V, E)$ is a subset $M \subseteq E$ for which each vertex is incident to at most one edge in M. A matching is \textit{perfect} if every vertex is incident to exactly one edge in M.
Maximal matchings

Not every graph contains a perfect matching.
Not every graph contains a perfect matching.

Theorem (Steffens)
Every graph contains a maximal matching.
Maximal matchings

Not every graph contains a perfect matching.

Theorem (Steffens)

Every graph contains a maximal matching.

Definition

- A matching M is (weakly) maximal provided there is no matching N with $M \subseteq N$.
Maximal matchings

Not every graph contains a perfect matching.

Theorem (Steffens)

Every graph contains a maximal matching.

Definition

- A matching M is _weakly maximal_ provided there is no matching N with $M \subset N$.
- A matching M is _maximal_ provided there is no matching N with $\text{supp}(M) \subset \text{supp}(N)$.

($\text{supp}(M)$ is the set of vertices incident to M.)
Maximal matchings

Not every graph contains a perfect matching.

Theorem (Steffens)
Every graph contains a maximal matching.

Definition

- A matching M is (weakly) maximal provided there is no matching N with $M \subset N$.
- A matching M is maximal provided there is no matching N with $\text{supp}(M) \subset \text{supp}(N)$.
 ($\text{supp}(M)$ is the set of vertices incident to M.)
How can you augment a matching?

Definition

An M-alternating path has edges alternating in and out of M.

An M-augmenting path is an M-alternating path that starts with an unmatched vertex and either ends in another unmatched vertex or is infinite.

If there is an M-augmenting path starting at v, then there is a matching M' that improves the support of M to include v (and possibly one other vertex).
How can you augment a matching?

Definition

An M-alternating path has edges alternating in and out of M.

An M-augmenting path is an M-alternating path that starts with an unmatched vertex and either ends in another unmatched vertex or is infinite.
Improving matchings

How can you augment a matching?

Definition
An M-alternating path has edges alternating in and out of M.
An M-augmenting path is an M-alternating path that starts with an unmatched vertex and either ends in another unmatched vertex or is infinite.
Improving matchings

How can you augment a matching?

Definition
An M-alternating path has edges alternating in and out of M.

An M-augmenting path is an M-alternating path that starts with an unmatched vertex and either ends in another unmatched vertex or is infinite.

If there is an M-augmenting path starting at v, then there is a matching M' that improves the support of M to include v (and possibly one other vertex).
Improving matchings

How can you augment a matching?

Definition
An M-alternating path has edges alternating in and out of M.

An M-augmenting path is an M-alternating path that starts with an unmatched vertex and either ends in another unmatched vertex or is infinite.

If there is an M-augmenting path starting at v, then there is a matching M' that improves the support of M to include v (and possibly one other vertex).
How can you augment a matching?

Definition

An M-alternating path has edges alternating in and out of M.

An M-augmenting path is an M-alternating path that starts with an unmatched vertex and either ends in another unmatched vertex or is infinite.

If there is an M-augmenting path starting at v, then there is a matching M' that improves the support of M to include v (and possibly one other vertex).
Improving matchings

How can you augment a matching?

Definition
An M-alternating path has edges alternating in and out of M.

An M-augmenting path is an M-alternating path that starts with an unmatched vertex and either ends in another unmatched vertex or is infinite.

If there is an M-augmenting path starting at v, then there is a matching M' that improves the support of M to include v (and possibly one other vertex).
Improving matchings

How can you augment a matching?

Definition
An M-alternating path has edges alternating in and out of M.

An M-augmenting path is an M-alternating path that starts with an unmatched vertex and either ends in another unmatched vertex or is infinite.

If there is an M-augmenting path starting at v, then there is a matching M' that improves the support of M to include v (and possibly one other vertex).
How can you augment a matching?

Definition
An \(M \)-alternating path has edges alternating in and out of \(M \).

An \(M \)-augmenting path is an \(M \)-alternating path that starts with an unmatched vertex and either ends in another unmatched vertex or is infinite.

If there is an \(M \)-augmenting path starting at \(v \), then there is a matching \(M' \) that improves the support of \(M \) to include \(v \) (and possibly one other vertex).
Improving matchings

How can you augment a matching?

Definition
An M-alternating path has edges alternating in and out of M.

An M-augmenting path is an M-alternating path that starts with an unmatched vertex and either ends in another unmatched vertex or is infinite.

If there is an M-augmenting path starting at v, then there is a matching M' that improves the support of M to include v (and possibly one other vertex).
How can you augment a matching?

Definition

An M-alternating path has edges alternating in and out of M.

An M-augmenting path is an M-alternating path that starts with an unmatched vertex and either ends in another unmatched vertex or is infinite.

If there is an M-augmenting path starting at v, then there is a matching M' that improves the support of M to include v (and possibly one other vertex).
Improving matchings

How can you augment a matching?

Definition
An M-alternating path has edges alternating in and out of M.

An M-augmenting path is an M-alternating path that starts with an unmatched vertex and either ends in another unmatched vertex or is infinite.

If there is an M-augmenting path starting at v, then there is a matching M' that improves the support of M to include v (and possibly one other vertex).
Theorem (Steffens)

A graph has a perfect matching iff for any matching M and unmatched v, there is an M-augmenting path starting at v.
Theorem (Steffens)

A graph has a perfect matching iff for any matching M and unmatched v, there is an M-augmenting path starting at v.

\[\text{Condition (A)} \]
Theorem (Steffens)

A graph has a perfect matching iff for any matching M and unmatched v, there is an M-augmenting path starting at v.

\[\text{Condition (A)} \]

Corollary

Every graph has a maximal matching.
Steffens’ Theorem

Theorem (Steffens)

A graph has a perfect matching iff for any matching M and unmatched v, there is an M-augmenting path starting at v.

Corollary

Every graph has a maximal matching.

Really, maximality seems to be a corollary to the proof of this theorem.
Our goal

Use Reverse Mathematics to understand the strength of both of these theorems.
Our goal

Use Reverse Mathematics to understand the strength of both of these theorems.

The plan:

1. Complete classification for locally finite graphs.
Our goal

Use Reverse Mathematics to understand the strength of both of these theorems.

The plan:

1. Complete classification for locally finite graphs.
2. Get a sense why the general case is much much much much harder to classify (probably).
Definition

- A graph is *locally finite* provided every vertex has finite degree.
- A graph is *bounded* provided there is a function $h : V \rightarrow \mathbb{N}$ s.t. $\forall x, y \in V (\{x, y\} \in E \rightarrow h(x) \geq y)$.

Think: bounded = highly computable.
Definition

- A graph is *locally finite* provided every vertex has finite degree.
- A graph is *bounded* provided there is a function $h : V \to \mathbb{N}$ such that $\forall x, y \in V (\{x, y\} \in E \rightarrow h(x) \geq y)$.

Think: bounded = highly computable.
Theorem
The following are equivalent over RCA$_0$:

1. Every locally finite graph has a maximal matching.
2. A locally finite graph has a perfect matching iff it satisfies condition (A).
3. ACA$_0$.
Theorem
The following are equivalent over RCA₀:
1. Every locally finite graph has a maximal matching.
2. A locally finite graph has a perfect matching iff it satisfies condition (A).
3. ACA₀.

Theorem
The following are equivalent over RCA₀:
1. Every bounded graph has a maximal matching.
2. A bounded graph has a perfect matching iff it satisfies condition (A).
3. WKL₀.
Proofs

Idea: Build a tree whose paths give perfect matchings.
Proofs

Idea: Build a tree whose paths give perfect matchings.

\[\langle a_0, a_1, \ldots, a_n \rangle \in T \text{ iff } \{(0, a_0), (1, a_1), \ldots, (n, a_n)\} \text{ is a matching.} \]
Proofs

Idea: Build a tree whose paths give perfect matchings.

\[\langle a_0, a_1, \ldots, a_n \rangle \in T \text{ iff } \{(0, a_0), (1, a_1), \ldots, (n, a_n)\} \text{ is a matching.} \]

Condition (A) guarantees the tree will be infinite.
Steffens for locally finite graphs implies ACA₀:
Reversals

Steffens for locally finite graphs implies ACA₀:

[Diagram of graph with dots and lines]

...
Reversals

Steffens for locally finite graphs implies ACA$_0$:

\[\ldots \]
Steffens for locally finite graphs implies ACA_0:

Steffens for bounded graphs implies WKL_0:
Reversals

Steffens for locally finite graphs implies ACA_0:

Steffens for bounded graphs implies WKL_0:
Reversals

Steffens for locally finite graphs implies ACA₀:

\[
\begin{array}{c}
\text{---} \\
\text{---} \\
\text{---} \\
\text{---} \\
\text{---} \\
\text{---} \\
\end{array}
\]

Steffens for bounded graphs implies WKL₀:

\[
\begin{array}{c}
\text{---} \\
\end{array}
\]
Reversals

Steffens for locally finite graphs implies ACA_0:

Steffens for bounded graphs implies WKL_0:
Reversals

Steffens for locally finite graphs implies ACA_0:

\[\ldots \]

Steffens for bounded graphs implies WKL_0:

\[\ldots \]
Graphs in general

Why is this messy?
Graphs in general

Why is this messy?
Why is this messy?
Graphs in general

Why is this messy?
Graphs in general

Why is this messy?
Why is this messy?

The problem: To use a larger matching, you must abandon a smaller matching.
Graphs in general

Why is this messy?

The problem: To use a larger matching, you must abandon a smaller matching.
Definition
A matching M is *independent* provided there is no proper M-augmenting path starting at a vertex unmatched by M.

A subgraph is *independent* provided it has a perfect matching, and all perfect matchings are independent.
Definition
A matching M is *independent* provided there is no proper M-augmenting path starting at a vertex unmatched by M.

A subgraph is *independent* provided it has a perfect matching, and all perfect matchings are independent.

Lemma
Every graph has a maximal independent matching.
Independent matchings

Definition
A matching M is *independent* provided there is no *proper* M-augmenting path starting at a vertex unmatched by M.

A subgraph is *independent* provided it has a perfect matching, and all perfect matchings are independent.

Lemma
Every graph has has a maximal independent matching.

Proof.
Zorn’s lemma.
Independent matchings

Definition
A matching M is *independent* provided there is no proper M-augmenting path starting at a vertex unmatched by M.

A subgraph is *independent* provided it has a perfect matching, and all perfect matchings are independent.

Lemma
Every graph has has a maximal independent matching.

Proof.
Work in a countably coded β_2-model; build an increasing sequence of independent matchings; argue that the union is maximal.
Definition

A matching M is *independent* provided there is no proper M-augmenting path starting at a vertex unmatched by M.

A subgraph is *independent* provided it has a perfect matching, and all perfect matchings are independent.

Lemma

Every graph has has a maximal independent matching.

Proof.

Work in a countably coded β_2-model; build an increasing sequence of independent matchings; argue that the union is maximal.

Note: this is a proof in Π^1_2-CA.
Suppose G satisfies condition (A)

- Take a maximal independent matching M.
Suppose G satisfies condition (A)

- Take a maximal independent matching M.
- If there is some v not matched, take a maximal independent matching M' of $G \setminus (V(M) \cup \{v\})$.

Note: we potentially need the maximal independent subgraph lemma infinitely often, but actually, exactly once.
Suppose G satisfies condition (A)

- Take a maximal independent matching M.
- If there is some v not matched, take a maximal independent matching M' of $G \setminus (V(M) \cup \{v\})$.
- Use an M'-augmenting path starting at v to get a matching that includes M and v, and whose complement satisfies condition (A).
A proof of Steffens’ theorem

Suppose G satisfies condition (A)

- Take a maximal independent matching M.
- If there is some v not matched, take a maximal independent matching M' of $G \setminus (V(M) \cup \{v\})$.
- Use an M'-augmenting path starting at v to get a matching that includes M and v, and whose complement satisfies condition (A).
- Repeat.
Suppose G satisfies condition (A)

- Take a maximal independent matching M.
- If there is some v not matched, take a maximal independent matching M' of $G \setminus (V(M) \cup \{v\})$.
- Use an M'-augmenting path starting at v to get a matching that includes M and v, and whose complement satisfies condition (A).
- Repeat.
A proof of Steffens’ theorem

Suppose G satisfies condition (A)

- Take a maximal independent matching M.
- If there is some v not matched, take a maximal independent matching M' of $G \setminus (V(M) \cup \{v\})$.
- Use an M'-augmenting path starting at v to get a matching that includes M and v, and whose complement satisfies condition (A).
- Repeat.

Note: we potentially need the maximal independent subgraph lemma infinitely often,...
A proof of Steffens’ theorem

Suppose G satisfies condition (A)

- Take a maximal independent matching M.
- If there is some v not matched, take a maximal independent matching M' of $G \setminus (V(M) \cup \{v\})$.
- Use an M'-augmenting path starting at v to get a matching that includes M and v, and whose complement satisfies condition (A).
- Repeat.

Note: we potentially need the maximal independent subgraph lemma infinitely often, but actually, exactly once.
Take a maximal independent subgraph H of G.
A proof of maximality

Take a maximal independent subgraph H of G.

Let N be the set of vertices not in H but adjacent only to vertices in H.
A proof of maximality

Take a maximal independent subgraph H of G.

Let N be the set of vertices not in H but adjacent only to vertices in H.

$G \setminus (H \cup N)$ satisfies condition (A), so by Steffens, has a perfect matching.
A proof of maximality

Take a maximal independent subgraph H of G.

Let N be the set of vertices not in H but adjacent only to vertices in H.

$G \setminus (H \cup N)$ satisfies condition (A), so by Steffens, has a perfect matching.

But the perfect matching would be independent in G, giving a larger independent matching. So any perfect matching of H is a maximal matching of G.
Lemma
Given any tree T, there is a tree T' such that T has an infinite path iff T' has a perfect matching.
Lemma
Given any tree T, there is a tree T' such that T has an infinite path iff T' has a perfect matching.

Proposition
Maximality implies Π_1^1-CA$_0$. Steffens implies Σ_1^1-AC$_0$.
Lemma
Given any tree T, there is a tree T' such that T has an infinite path iff T' has a perfect matching.

Proposition
Maximality implies Π_1^1-CA$_0$. Steffens implies Σ_1^1-AC$_0$.
Reversals

Lemma

Given any tree T, there is a tree T' such that T has an infinite path iff T' has a perfect matching.

Proposition

Maximality implies Π_1^1-CA_0. Steffens implies Σ_1^1-AC_0.
Can we do better?

For any computable ordinal α, there is a computable graph G that satisfies condition (A), any perfect matching of which computes $0^{(\alpha)}$.
For any computable ordinal α, there is a computable graph G that satisfies condition (A), any perfect matching of which computes $0^{(\alpha)}$.

This would be enough to prove ATR_0, except we don’t know how to prove G satisfies condition (A) without using Π^1_1-Tl_0. (Σ^1_1-DC_0)
The current picture

\[\Pi^1_2 - \text{CA}_0^+ \rightarrow \text{Maximal Matching} \]

\[\Pi^1_2 - \text{CA}_0 \rightarrow \text{Max Ind} \]

\[\Pi^1_1 - \text{CA}_0 \leftarrow \text{Max Ind} \]

\[\text{ATR}_0 \rightarrow +\Pi^1_1 - \text{TI}_0 \rightarrow \text{Steffens} \]

\[\Sigma^1_1 - \text{AC}_0 \rightarrow \text{ACA}_0 \leftarrow \text{Locally Finite Steffens & Maximality} \]

\[\text{ACA}_0 \leftarrow \text{Bounded Steffens & Maximality} \]

\[\text{WKL}_0 \]
The End

Thanks!