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Prologue

§ The Turing degrees measure the computability-theoretic
complexity of elements of 2ω (or ωω).

§ We can code other mathematical objects as binary sequences and
use the Turing degrees to measure their complexity.

§ However, this does not always lead to a coherant measure of
complexity; there may not be a “canonical” coding.

§ The enumeration degrees, a natural extension of the Turing
degrees, work in some circumstances where Turing degrees fail.

§ E.g., the enumeration degrees can measure the complexity of
continuous functions f : r0, 1s Ñ R. In fact, we get a proper
subclass of the enumeration degrees: the continuous degrees.

§ A larger subclass, the cototal degrees, arises naturally in symbolic
dynamics and computable structure theory.
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Part I: The Cototal Degrees



The Turing degrees are not always sufficient:
Computable structure theory

Let A be a countable structure in a finite language L. A presentation
of A is an ismorphic copy of A with universe ω.

Definition
The degree spectrum of a countable structure A is the collection
SpecpAq of Turing degrees of presentations of A.

When SpecpAq has a least element, we call it the Turing degree of A.

Not all countable structure have a Turing degree.

Theorem (Richter 1977)
If a linear ordering L has Turing degree, then it is computable.

In this case, the enumeration degrees won’t help much.
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The Turing degrees are not always sufficient:
Symbolic dynamics

The shift operator on 2ω is the map taking an infinite binary sequence
α P 2ω to the unique β P 2ω such that α “ aβ for some a P t0, 1u, i.e.,
the operator that erases the first bit of the sequence.

Definition
§ A subshift is closed, shift-invariant subspace X of 2ω.
§ The degree spectrum of a subshift X is the set SpecpXq of Turing
degrees of elements of the subshift.

§ X is a minimal subshift if no nonempty Y Ă X is a subshift.

If SpecpXq has a least element, then it could be considered as Turing
degree of the subshift X.

Theorem (Hochman, Vanier 2017)
There is a minimal subshift X with no member of least Turing degree.
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The enumeration degrees

Friedberg and Rogers introduced enumeration reducibility in 1959.

Informally: A Ď ω is enumeration reducible to B Ď ω (A ďe B) if
there is a uniform way to enumerate A from an enumeration of B.
(Selman proved that the uniformity condition can be dropped.)

Definition. A ďe B if there is a c.e. set W such that

A “ tn : pDeq xn, ey PW and De Ď Bu,

where De is the eth finite set in a canonical enumeration.

The degree structure De induced by ďe is called the enumeration
degrees. It is an upper semi-lattice with a least element (the degree of
all c.e. sets).
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The total enumeration degrees

Proposition. A ďT B iff A‘A is B-c.e. iff A‘A ďe B ‘B.

This suggests a natural embedding of the Turing degrees into the
enumeration degrees.

Proposition. The embedding ι : DT Ñ De, defined by

ιpdT pAqq “ depA‘Aq,

preserves the order and the least upper bound (and even the jump).

Definition. A set A is total if A ěe A (or equivalently if
A ”e A‘A). An enumeration degree is total if it contains a total set.

The image of the Turing degrees under the embedding ι is exactly the
set of total enumeration degrees.

It is easy to see that there are nontotal enumeration degrees. In fact,
the enumeration degrees are downwards dense (Gutteridge 1971).
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Back to minimal subshifts

Given a minimal subshift X, we would like to characterize the set of
Turing degrees of members of X.

Definition. The language of subshift X Ď 2ω is the set

LX “ tσ P 2ăω : pDα P Xq σ is a subword of αu.

1. If X is minimal and σ P LX , then for every α P X, σ is a subword
of α. So every element of X can enumerate the set LX .

2. If we can enumerate LX , then we can compute a member of X.

Theorem (Jeandel). A Turing degree a computes a member of the
minimal subshift X if and only if a can enumerate LX .

So the computability theoretic complexity of a minimal subshift X
corresponds exactly to the enumeration degree of LX .
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The cototal enumeration degrees

Jeandel noticed something special about LX for a minimal subshift X.

§ An enumeration of LX allows us to eliminate branches that do
not belong to X in a stage by stage manner.

§ If w is word that appears along every branch that remains at
stage s, then w P LX .

§ The compactness of 2ω ensures that we won’t miss any word from
the language using this process of enumeration.

So LX ďe LX .

Definition. A set A is cototal if A ďe A. An enumeration degree is
cototal if it contains a cototal set.

Theorem (M., Soskova 2018). The cototal enumeration degrees
are a dense substructure of the enumeration degrees.
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Examples of cototal enumeration degrees

Fact. Every total enumeration degree is cototal: A‘A ”e A‘A.

Definition (Carl von Jaenisch 1862)
Let G “ pV,Eq be a graph. A set M Ď V is independent, if no two
members of M are edge related. M is maximal set, if every v PM is
edge related to a vertex in M .

Note. M ďe M because v PM if and only if there is a w PM such
that w and v are edge related.

Theorem (Andrews, Ganchev, Kuyper, Lempp, M., A.
Soskova, and M. Soskova)
An enumeration degree is cototal if and only if it contains the
complement of a maximal independent set for the graph ωăω.

Theorem (McCarthy). An enumeration degree is cototal if and
only if it contains the complement of a maximal antichain in ωăω.

8 / 25



Cototal degrees and computable structure theory

Theorem (Montalbán)
A degree spectrum of a structure is not the Turing-upward closure of
an Fσ set of reals in ωω, unless it is an enumeration-cone (the set of
total/Turing degrees above some fixed enumeration degree).

In particular, it must be the cone above the enumeration degree of an
e-pointed tree.

Definition (Montalbán). A tree T Ď 2ăω is e-pointed if it has no
dead ends and every infinite path f P rT s enumerates T .

Theorem (McCarthy). An enumeration degree is cototal if and
only if it contains a (uniformly) e-pointed tree.

Corollary
A degree spectrum is the Turing-upward closure of an Fσ set of reals
in ωω if and only if it is the enumeration-cone of a cototal degree.
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Characterizing the degrees of minimal subshifts

Recall
§ If X is a minimal subshift, then its spectrum (i.e., set of Turing
degrees of members of X) is the enumeration-cone above the
enumeration degree of LX , the language of X.

§ LX is a cototal set (Jeandel).

Theorem (McCarthy)
Every cototal enumeration degree is the degree of the language of a
minimal subshift.

So the cototal enumeration degrees arose independently in symbolic
dynamics and in computable structure theory.
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Part II: The Continuous Degrees



Example: every real number has a Turing degree

In computable analysis, coding is done via names.

Definition. λ : Q` Ñ Q is a name of a real x P R if for all rationals
ε ą 0 we have |λpεq ´ x| ă ε.

Names can be easily coded as binary sequences, allowing us to transfer
computability-theoretic notions to computable analysis. For example:

Definition. A function f : RÑ R is computable if there is a Turing
functional that takes a name for any real x P R to a name for fpxq.

§ The binary expansion of a real x is computable from every name.
(But this is nonuniform because of the dyadic rationals!)

§ The binary expansion of x computes a name for x.
§ This is the least Turing degree name for x; it is natural to take
this as the Turing degree of x.

11 / 25



The Turing degrees are not always sufficient:
Computable analysis

Definition. A computable metric space is a metric space M together
with a countable dense sequence QM “ tqMn unPω on which the metric
is computable (as a function ω2 Ñ R).

Example. The Hilbert cube is r0, 1sω with the metric

dpα, βq “
ÿ

nPω

|αpnq ´ βpnq|{2n.

Let Qr0,1s
ω

be the sequences of rationals in r0, 1s with finite support.

Other computable metric spaces include 2ω, ωω, R, and Cr0, 1s.

Definition. λ : Q` Ñ ω is a name of a point x PM if for all
rationals ε ą 0 we have dMpx, qMλpεqq ă ε.
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The Turing degrees are not always sufficient:
Computable analysis

As before, the complexity of a point in a metric space can be captured
through the collection of Turing degrees of names of this point.

Question (essentially Steffen Lempp). Do elements of
computable metric spaces have least Turing degree names?

Useful fact. If β P r0, 1sω contains no dyadic rationals, then the
sequence of binary expansions is computable from (every name for) β.
But this sequence computes a name for β, which is therefore a least
Turing degree name.

However, in general, least Turing degree names may not exist.

Theorem (M. 2004)
There is a β P r0, 1sω with no least Turing degree name.
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The continuous degrees

Theorem (M. 2004)
There is a β P r0, 1sω with no least Turing degree name.

So how can we measure the complexity of points in a computable
metric space?

Definition (M. 2004). If x and y are members of (possibly
different) computable metric spaces, then x ďr y if there is a uniform
way to compute a name for x from every name for y.

This reducibility induces the continuous degrees.

Theorem (M. 2004). Every continuous degree contains a point
from r0, 1sω and a point from Cr0, 1s.
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Embedding the continuous degrees into the e-degrees
For α P r0, 1sω, let

Cα “
à

iPω

tq P Q : q ă αpiqu ‘ tq P Q : q ą αpiqu.

Observation. Enumerating Cα is exactly as hard as computing a
name for α. So α ÞÑ Cα induces an embedding of the continuous
degrees into the enumeration degrees.

§ Elements of 2ω, ωω, and R are mapped onto the total degree of
their least Turing degree name (i.e., their Turing degree).

§ It turns out that x PM has nontotal (enumeration) degree iff it
has no least Turing degree name.

§ Every continuous degree is mapped to a cototal enumeration
degree: q ă αpiq iff there is some p ď αpiq such that q ă p.

So the continuous enumeration degrees extend the total degrees
and form a subclass of the cototal degrees.
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Nontotal continuous degrees: quick proof

Theorem (M. 2004). There is a nontotal continuous degree.

A quick proof was found independently by Kihara & Pauly and
Mathieu Hoyrup.

Proof.
§ If x P r0, 1sω has total degree, then there is a y P 2ω and Turing
functionals Γ, Ψ that map (names of) x to (names of) y and back.

§ The subspaces on which the functions induced by Γ and Ψ are
inverses are homeomorphic (because computable functionals
induce continuous functions).

§ Subspaces of 2ω are zero dimensional, so if x P r0, 1sω has total
degree, then it is in one of countably many zero dimensional
“patches”.

§ The Hilbert cube r0, 1sω is strongly infinite dimensional, hence
not a countable union of zero dimensional subspaces.

§ So some x P r0, 1sω is not covered by one of these patches.
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Nontotal continuous degrees: neutral measures

The earliest known construction of an object of nontotal continuous
degree was given by Leonid Levin in 1976.

Definition. X P 2ω is ν-random if there is a name λ of ν such that
no ν-Martin-Löf test relative to λ covers X.

This definition is equivalent to ones of Levin 1976 and Reimann 2008.

Definition. ν is a weakly neutral measure if every X P 2ω is
ν-random.

Levin constructed a neutral measure, which satisfies a slightly
stronger condition, using Sperner’s lemma, a combinatorial analogue
of the Brouwer fixed point theorem.

Proposition (Day and M. 2013). If ν has Turing degree, then it
is not weakly neutral.

So we have another proof that nontotal continuous degrees exist.
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Nontotal continuous degrees: my proof

Theorem (M. 2004). There is a nontotal continuous degree.

My proof also relies on a nontrivial fact from topology, a
generalization of Brouwer’s fixed point theorem to multivalued
functions on an infinite dimensional space.

Theorem (Eilenberg and Montgomery 1946). Assume that
Ψ: r0, 1sω Ñ r0, 1sω is a multivalued function with closed graph such
that Ψpαq is nonempty and convex for each α P r0, 1sω. Then Ψ has a
fixed point α (i.e., α P Ψpαq).

I constructed such a Ψ so that the fixed points have nontotal
continuous degree, proving the theorem.

This approach gives more information because Ψ is effective enough
that (the names for) its fixed points form a Π0

1 class.

Prop. Every PA total degree bounds a nontotal continuous degree.
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Intervals containing nontotal continuous degrees

Prop. Every PA total degree bounds a nontotal continuous degree.

The reverse is also true:
Prop. Every nontotal continuous degree bounds a PA total degree.

Aside. The proof invokes topology again, this time using a
constructive counterexample of V. P. Orevkov: he gave a continuous
retraction of (the constructive points of) the unit square r0, 1s2 onto
its boundary Bpr0, 1s2q.

So a total degree a is PA if and only if it bounds a nontotal
continuous degree. Relativizing this fact we obtain:

Theorem (M. 2004). Let b ď a be total. There is a nontotal
continuous degree c P pb,aq if and only if a is PA relative to b.

Also note that continuous degrees are not downwards dense, hence
they differ from both the enumeration degrees and the cototal degrees.
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Characterizing the continuous enumeration degrees

As it turns out, the contiunous enumeration degrees have a very
simple characterization inside the enumeration degrees.

Definition
An enumeration degree a is almost total if whenever b ę a is total,
a_ b is also total.

In other words, an enumeration degree is almost total if adding any
new total information takes it to a total degree.

Note. The join of any two total degrees is total, so total degrees are
almost total.

Are there nontotal almost total degrees?
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Continuous degrees are almost total

Are there nontotal almost total degrees? Yes!

Recall. If β P r0, 1sω contains no dyadic rationals, then β is
equivalent the join of the binary expansions of its coordinates, which
has total degree.

Fact (Cai, Lempp, M., Soskova 2014 (unpublished)).
Continuous enumeration degrees are almost total.

Proof. Take α P r0, 1sω and x P r0, 1s such that x ęr α. Define
β P r0, 1sω by βpnq “ pαpnq ` xq{2. Note that

§ No component of β is rational, so β has total degree.
§ α‘ x ”r β ‘ x, hence it is also total.

There are nontotal continuous degrees, so there are nontotal almost
total degrees. This is the only way we know how to produce nontotal
almost total degrees. (In particular, we have no “direct” construction.)
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Almost total degrees are continuous

Theorem (Andrews, Igusa, M., Soskova). Almost total degrees
are continuous.

We used a series of implications:

Almost total ùñ Uniformly codable
ùñ Contains a holistic set
ùñ Continuous.

§ All known constructions of nontotal continuous degrees involve a
nontrivial topological component.

§ Conversely, the fact that the Hilbert cube is not a countable
union of subspaces of Cantor space follows easily from the fact
that there is a nontotal continuous degrees in every cone.

So a purely topological fact is reflected in the structure of the
enumeration degrees.
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Uniform Codability and Holistic sets

Definition. Let A Ď ω. Call U Ď 2ω a Σ0
1xAy class if there is a set of

strings W ďe A, such that

U “ rW s “ tX P 2ω : pDσ PW q X ľ σu.

A Π0
1xAy class is the complement of a Σ0

1xAy class.

Note that a Π0
1

@

A‘A
D

class is just a Π0
1rAs class in the usual sense.

Definition. A Ď ω is codable if there is a nonempty Π0
1xAy class P

such that every X P P enumerates A. If there is a c.e. operator W
such that A “WX for every X P P , then A is uniformly codable.

Definition. S Ď ωăω is holistic if for every σ P ωăω,
1. p@nq σ"p2nq and σ"p2n` 1q are not both in S,
2. If σ P S, then pDnq σ"p2n` 1q P S.
3. If σ R S, then p@nq σ"p2nq P S,
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Definability in the enumeration degrees

Theorem (Cai, Ganchev, Lempp, M., and Soskova 2016).
The total degrees are first order definable in the enumeration degrees
(as a partial order).

The definition is “natural”. It builds on work of Kalimullin (2003) and
Ganchev and Soskova (2015).

Corollary (AIMS). The continuous degrees are definable in the
enumeration degrees.

Recall that if a and b are total degrees, then a is PA above b iff there
is a nontotal continuous degree c P pb,aq.

Corollary (AIMS). The relation “a is PA above b” (on total
degrees) is first order definable in the enumeration degrees.

It is not known to be definable in the Turing degrees.
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To finish: a unifying example

Kihara and Pauly assigned (enumeration) degrees to point in any
second countable T0 topological space.

Definition (Kihara and Pauly)
If X has countable basis tNiuiPω, then the degree of x P X to the
enumeration degree of ti : x P Niu.

The point degree spectrum of a topological space X (i.e., the degrees
of points X ) is a subclass of the enumeration degrees.

1. Specp2ωq “ Specpωωq “ SpecpRq “ DT ;

2. Specpr0, 1sωq “ SpecpCr0, 1sq “ Dr;

3. SpecpSωq “ De, where S “ tH, t0u, t0, 1uu is the Sierpinski space.

Theorem (Kihara). If X is a sufficiently effective, second countable
Gδ spaces (i.e., every closed set is Gδ), then every point in X has
cototal degree. Conversly, all cototal degrees arise in this way.
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Thank you!


