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Generically computable sets

Jockusch and Schupp introduced these notions (J. London
Math. Soc. 2012)

Definition
Let S ⊆ ω.

1. S is generically computable if there is a partial
computable function Φ : ω → 2 such that Φ = χS on the
domain of Φ, and such that the domain of Φ has
asymptotic density 1.

2. S is coarsely computable if there is a computable set T
such that S4T has asymptotic density 0.

There is a coarsely computable c.e. set which is not generically
computable and a generically computable c.e. set which is not
coarsely computable.



Density in ω × ω

For A ⊆ ω, δ(A) = limn→∞|A ∩ n|/n

Upper density is limsupn→∞|A ∩ n|/n

For C ⊆ ω × ω, let δ(C ) = limn→∞|C ∩ (n × n|/n2

Lemma
For A ⊆ ω, δ(A) = δ ⇐⇒ δ(A× A) = δ2.

On the other hand, we have:

Theorem
There is a computable dense C ⊂ ω × ω such that for any
infinite c.e. set A ⊂ ω, A× A is not a subset of C .



Generically Computable Relations

Definition
Let R be a relation on ω.

1. R is generically computable if there is a partial
computable φ : ω × ω → 2 with Φ = χR on the domain
of φ, and a dense c.e. set A with A× A ⊆ Dom(φ).

2. An equivalence relation R is generically computable if
there is a p.c. φ : ω × ω → 2 such that φ = χR on
Dom(φ), and a dense c.e. set A with A× A ⊆ Dom(φ).

3. An equivalence relation R is generically c.e. if there is a
c.e. equivalence relation S on a c.e. set B and a dense
c.e. set A ⊆ B such that R agrees with S on A× A.

4. An equiv. relation R is strongly generically computable if
there is a computable equiv. relation S on ω and a dense
c.e. set A such that R agrees with S on A× A.



Faithful Relations

Definition
If R is a relation on ω and A is a subset of ω, we say that A is
R-faithful if whenever a ∈ A and either R(a, b) or R(b, a),
then b ∈ A.

A is R-faithful for an equivalence relation R IFF for any
R-equivalence class C , either C ⊆ A or C ∩ A = ∅.

R is faithfully generically computable if the set A in the
previous definition is R-faithful and similarly for the other
notions.



Computable Equivalence Structures

Definition
For any equivalence relation E on ω, the character χ(E ) is
{(k , n) : E has at least n equivalence classes of size k}.
Character K is unbounded if {k : (k , 1) ∈ K} is unbounded.

Lemma
For any c.e. equivalence relation R on a c.e. set A, the
character χ(R) is a Σ0

2 set.

Proposition
For any Σ0

2 character K

1. There is a computable equivalence structure with
character K and infinitely many infinite classes.

2. There is a c.e. structure with character K and one infinite
class (or k for any finite k).



s1-Functions

Definition
The function f : ω2 → ω is said to be an s1-function if the
following hold:

1. For every i and s, f (i , s) ≤ f (i , s + 1).

2. For every i , the limit mi = lims f (i , s) exists.

3. For every i , mi < mi+1.

Lemma
Let A = (ω,E ) be a c.e. equivalence structure with no infinite
equivalence classes and an unbounded character. Then there is
a computable s1-function f such that A contains an
equivalence class of size mi for all i , where mi = lims f (i , s).



More about s1-Functions

Lemma
For any Σ0

2 character K which possesses a computable
s1-function, there is a computable equivalence structure E with
character K and no infinite equivalence classes.



Generically Computable Equivalence Relations

Theorem
Let E = (ω,E ) be an equivalence relation such that either

1. E has an infinite equivalence class, or

2. there is a finite k such that E has infinitely many classes
of size k, or

3. χ(E) has an infinite Σ0
2 subset with an s1-function.

Then E has a faithfully strongly generically computable copy.



Proof

Let B be an infinite class in E .

Let C have an infinite class A which is a computable dense set,
and with (ω \ B ,E ) isomorphic to (ω \ A,R).

So (ω,R) is a copy of E and A is R-faithful.

Let (ω, S) consist of two infinite classes A and ω \ A.

Then S is computable and agrees with R on A.

For the second case, take B to consist of infinitely many
classes of size k .

For the third case, take B to have a Σ0
2 character with an

s1-function.



Unfaithful Structures

Theorem
Every equivalence structure E = (ω,E ) has a strongly
generically computable copy.

Proof Sketch: This follows from previous Theorem unless the
character is unbounded.
Let C = {k : (k , 1) ∈ χ(E)}.
Then choose a class Bk of size k for each k .
Let B consist of one element from each Bk .
Let A be a dense computable set and let R be equality on A.
Define R on ω \ A so that (ω,R) is isomorphic to E .
Define S to be equality.

Then (ω, S) is computable and agrees with (ω,R) on A.



Faithful Structures

Theorem
Let E = (ω,E ) be an equivalence structure. Then the
following are equivalent:

(a) E has a faithfully strongly generically computable copy

(b) E has a faithfully generically computable copy

(c) E has a faithful generically c.e. copy

(d) E has an infinite faithful substructure with a computable
copy

(e) E has an infinite faithful substructure with a c.e. copy

(f) either (i) E has an infinite equivalence class, or (ii) there
is a finite k such that E has infinitely many classes of size
k, or (iii) χ(E) has an infinite Σ0

2 subset with an
s1-function.



Coarsely Computable Structures

Definition
An equivalence structure E = (ω,E ) is coarsely computable if
there is a computable equivalence relation R and a set A of
density one such that for a, b ∈ A, aRb ⇐⇒ aEb. If (A,E ) is
a faithful substructure of E , then E is faithfully coarsely
computable.

Strongly generically computable implies coarsely computable,
so previous results apply.

We will construct a faithfully coarsely computable structure
with no faithfully generically computable copy.



Examples

Example: Let (ω,E ) be the canonical structure with one
classe of every finite size k
The equivalence classes of (ω,E ) are {0}, {1, 2}, {3, 4, 5}, . . .
The first k classes have 1 + 2 + · · ·+ k = k(k + 1)/2 elements.
For any set K , AK is the classes of size k for k ∈ K , under E .

Lemma
If K is a dense set, then AK is also a dense set.

Lemma
For any dense co-infinite K, there is a faithfully coarsely
computable structure with character {(k , i) : k ∈ K , i ≤ 2}.
Proof: Let (ω,E ) be as above. Define R to be E on Ak and
to partition ω \ K into one class of size k for each k ∈ K .



Coarsely but not Generically

Observation
There is a dense set K with no infinite Σ0

2 subset.

For such K we get a faithfully coarsely computable structure
with no faithfully generically computable copy.

That is, the character {(k , i) : k ∈ K , i ≤ 2} can have no
infinite Σ0

2 subset since K has no infinite Σ0
2 subset.



Generically Computable Functions

Definition
A function F is generically computable if there is a p.c.
function φ such that φ = F on Dom(φ), and Dom(φ) is dense.

Definition
F : A → B is a generically computable isomorphism if there is
a p.c. θ such that F = θ on Dom(φ), and Dom(φ) and
Rng(φ) are both dense.

Proposition
Structures A and B are generically computably isomorphic if
and only if there is an isomorphism F : A → B such that both
F and F−1 are generically computable.



Coarsely Computable Functions

Definition
A function F is coarsely computable if there is a total
computable φ such that {n : F (n) = φ(n)} is dense.

Definition

1. An isomorphism F : A → B is coarsely computable if
there is a total computable θ such that
C = {x : θ(x) = F (x)} and F [C ] are both dense.

2. A set isomorphism F : A → B is a weakly coarsely
computable isomorphism if there is a total computable θ
which is an isomorphism of the substructure
C = {x : θ(x) = F (x)} to F [C ] and both sets are dense.



Generically Computably Isomorphic Structures

An equivalence structure A is a (1,2)-structure if it consists of
infinitely many classes of size 1 and of size 2.

Fact: There are computable (1,2) structures which are not
computably isomorphic.

Theorem
If A and B are computable (1,2)-structures and the classes of
size 2 are dense in each, then A and B are generically
computably isomorphic.

Sketch: The classes of size 2 form a c.e. set in each structure.

Let {a0, a1}, {a2, a3}, . . . enumerate the classes of size 2 in A
and {b0, b1}, {b2, b3}, . . . enumerate the classes of size 2 in B.

Define φ(an) = bn for each n. Now extend this arbitrarily to
the classes of size 1 to obtain F .



On the Other Hand

Theorem
There are computable (1,2)-structure A and B such that the
classes of size 1 are dense in each, but A and B are
notgenerically computably isomorphic.

Sketch: Just let the classes of size 2 compose a simple c.e. set
of density 0.



Coarsely Computably Isomorphic Structures

Theorem
If A = (ω,EA) and B = (ω,EB) be are isomorphic
(1,2)-structures such that the classes of size 1 are dense in
both, then A and B are coarsely computably isomorphic.

Sketch: Let UA be the classes of size 1 in A and UB the
classes of size 1 in B. Let U = UA ∩ UB .

Then the identity is an isomorphism of (U ,EA) to (U ,EB).

If UA \U and UB \U have different cardinalities, just remove a
subset of density 0 from the larger set.



A More General Result

Theorem
Suppose that A and B are computable (1, 2)-structures such
that the asymptotic density of the classes of size 2 in each
both equal a computable real q. Then A and B are weakly
coarsely computably isomorphic.

Idea of Proof: Define the map in stages as we see the
proportion of classes of size 2 approach q so the amount of
”errors” tends to 0.



Current and Future Work

Other notions of almost computability

Other equivalence structures beyond (1,2)-structures

Other structures, such as orderings, Boolean algebras,
injection structures, p-groups
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