Generically Computable Structures

Douglas Cenzer

Workshop on Computability Theory and its Applications, Waterloo, Canada

June, 2018

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline

- New notion of *generically computable structures* Faithful generically computable equivalence structures Characterization of equivalence structures with faithful generically computable copies
- Coarsely computable structures
- Generically computable isomorphisms and categoricity
- Generic character
- Joint work with Wesley Calvert and Valentina Harizanov

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Generically computable sets

Jockusch and Schupp introduced these notions (J. London Math. Soc. 2012)

Definition

Let $S \subseteq \omega$.

- 1. S is generically computable if there is a partial computable function $\Phi: \omega \to 2$ such that $\Phi = \chi_S$ on the domain of Φ , and such that the domain of Φ has asymptotic density 1.
- 2. S is coarsely computable if there is a computable set T such that $S \triangle T$ has asymptotic density 0.

There is a coarsely computable c.e. set which is not generically computable and a generically computable c.e. set which is not coarsely computable.

Density in $\omega \times \omega$

For
$$A \subseteq \omega$$
, $\delta(A) = \lim_{n \to \infty} |A \cap n|/n$
Upper density is $\limsup_{n \to \infty} |A \cap n|/n$
For $C \subseteq \omega \times \omega$, let $\delta(C) = \lim_{n \to \infty} |C \cap (n \times n)/n^2$
Lemma
For $A \subseteq \omega$, $\delta(A) = \delta \iff \delta(A \times A) = \delta^2$.

On the other hand, we have:

Theorem

There is a computable dense $C \subset \omega \times \omega$ such that for any infinite c.e. set $A \subset \omega$, $A \times A$ is not a subset of C.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Generically Computable Relations

Definition

Let R be a relation on ω .

- 1. *R* is generically computable if there is a partial computable $\phi : \omega \times \omega \rightarrow 2$ with $\Phi = \chi_R$ on the domain of ϕ , and a dense c.e. set *A* with $A \times A \subseteq Dom(\phi)$.
- 2. An equivalence relation R is generically computable if there is a p.c. $\phi : \omega \times \omega \rightarrow 2$ such that $\phi = \chi_R$ on $Dom(\phi)$, and a dense c.e. set A with $A \times A \subseteq Dom(\phi)$.
- An equivalence relation R is generically c.e. if there is a c.e. equivalence relation S on a c.e. set B and a dense c.e. set A ⊆ B such that R agrees with S on A × A.
- 4. An equiv. relation R is strongly generically computable if there is a computable equiv. relation S on ω and a dense c.e. set A such that R agrees with S on $A \times A$.

Definition

If R is a relation on ω and A is a subset of ω , we say that A is R-faithful if whenever $a \in A$ and either R(a, b) or R(b, a), then $b \in A$.

A is R-faithful for an equivalence relation R IFF for any R-equivalence class C, either $C \subseteq A$ or $C \cap A = \emptyset$.

R is faithfully generically computable if the set A in the previous definition is R-faithful and similarly for the other notions.

Computable Equivalence Structures

Definition

For any equivalence relation E on ω , the character $\chi(E)$ is $\{(k, n) : E \text{ has at least } n \text{ equivalence classes of size } k\}$. Character K is unbounded if $\{k : (k, 1) \in K\}$ is unbounded.

Lemma

For any c.e. equivalence relation R on a c.e. set A, the character $\chi(R)$ is a Σ_2^0 set.

Proposition

For any Σ_2^0 character K

- 1. There is a computable equivalence structure with character K and infinitely many infinite classes.
- 2. There is a c.e. structure with character K and one infinite class (or k for any finite k).

s₁-Functions

Definition

The function $f : \omega^2 \to \omega$ is said to be an s_1 -function if the following hold:

- 1. For every i and s, $f(i,s) \leq f(i,s+1)$.
- 2. For every *i*, the limit $m_i = \lim_{s \to s} f(i, s)$ exists.
- 3. For every *i*, $m_i < m_{i+1}$.

Lemma

Let $\mathcal{A} = (\omega, E)$ be a c.e. equivalence structure with no infinite equivalence classes and an unbounded character. Then there is a computable s_1 -function f such that \mathcal{A} contains an equivalence class of size m_i for all i, where $m_i = \lim_s f(i, s)$.

More about *s*₁-Functions

Lemma

For any Σ_2^0 character K which possesses a computable s_1 -function, there is a computable equivalence structure \mathcal{E} with character K and no infinite equivalence classes.

Generically Computable Equivalence Relations

Theorem

Let $\mathcal{E} = (\omega, E)$ be an equivalence relation such that either

- 1. \mathcal{E} has an infinite equivalence class, or
- 2. there is a finite k such that \mathcal{E} has infinitely many classes of size k, or

3. $\chi(\mathcal{E})$ has an infinite Σ_2^0 subset with an s_1 -function. Then \mathcal{E} has a faithfully strongly generically computable copy.

Proof

Let B be an infinite class in \mathcal{E} .

Let C have an infinite class A which is a computable dense set, and with $(\omega \setminus B, E)$ isomorphic to $(\omega \setminus A, R)$.

So (ω, R) is a copy of \mathcal{E} and A is R-faithful.

Let (ω, S) consist of two infinite classes A and $\omega \setminus A$.

Then S is computable and agrees with R on A.

For the second case, take B to consist of infinitely many classes of size k.

For the third case, take *B* to have a Σ_2^0 character with an s_1 -function.

Unfaithful Structures

Theorem

Every equivalence structure $\mathcal{E} = (\omega, E)$ has a strongly generically computable copy.

Proof Sketch: This follows from previous Theorem unless the character is unbounded.

Let $C = \{k : (k, 1) \in \chi(\mathcal{E})\}.$

Then choose a class B_k of size k for each k.

Let B consist of one element from each B_k .

Let A be a dense computable set and let R be equality on A. Define R on $\omega \setminus A$ so that (ω, R) is isomorphic to \mathcal{E} . Define S to be equality.

Then (ω, S) is computable and agrees with (ω, R) on A.

Faithful Structures

Theorem

Let $\mathcal{E} = (\omega, E)$ be an equivalence structure. Then the following are equivalent:

- (a) \mathcal{E} has a faithfully strongly generically computable copy
- (b) \mathcal{E} has a faithfully generically computable copy
- (c) \mathcal{E} has a faithful generically c.e. copy
- (d) \mathcal{E} has an infinite faithful substructure with a computable copy
- (e) \mathcal{E} has an infinite faithful substructure with a c.e. copy
- (f) either (i) \mathcal{E} has an infinite equivalence class, or (ii) there is a finite k such that \mathcal{E} has infinitely many classes of size k, or (iii) $\chi(\mathcal{E})$ has an infinite Σ_2^0 subset with an s_1 -function.

Coarsely Computable Structures

Definition

An equivalence structure $\mathcal{E} = (\omega, E)$ is coarsely computable if there is a computable equivalence relation R and a set A of density one such that for a, $b \in A$, aRb \iff aEb. If (A, E) is a faithful substructure of \mathcal{E} , then \mathcal{E} is faithfully coarsely computable.

Strongly generically computable implies coarsely computable, so previous results apply.

We will construct a faithfully coarsely computable structure with no faithfully generically computable copy.

Examples

Example: Let (ω, E) be the canonical structure with one classe of every finite size kThe equivalence classes of (ω, E) are $\{0\}, \{1, 2\}, \{3, 4, 5\}, \ldots$ The first k classes have $1 + 2 + \cdots + k = k(k+1)/2$ elements. For any set K, A_K is the classes of size k for $k \in K$, under E.

Lemma

If K is a dense set, then A_K is also a dense set.

Lemma

For any dense co-infinite K, there is a faithfully coarsely computable structure with character $\{(k, i) : k \in K, i \leq 2\}$. Proof: Let (ω, E) be as above. Define R to be E on A_k and to partition $\omega \setminus K$ into one class of size k for each $k \in K$.

Coarsely but not Generically

Observation

There is a dense set K with no infinite Σ_2^0 subset.

For such K we get a faithfully coarsely computable structure with no faithfully generically computable copy.

That is, the character $\{(k, i) : k \in K, i \leq 2\}$ can have no infinite Σ_2^0 subset since K has no infinite Σ_2^0 subset.

Generically Computable Functions

Definition

A function F is generically computable if there is a p.c. function ϕ such that $\phi = F$ on $Dom(\phi)$, and $Dom(\phi)$ is dense.

Definition

 $F : A \to B$ is a generically computable isomorphism if there is a p.c. θ such that $F = \theta$ on $Dom(\phi)$, and $Dom(\phi)$ and $Rng(\phi)$ are both dense.

Proposition

Structures A and B are generically computably isomorphic if and only if there is an isomorphism $F : A \to B$ such that both F and F^{-1} are generically computable.

Coarsely Computable Functions

Definition

A function F is coarsely computable if there is a total computable ϕ such that $\{n : F(n) = \phi(n)\}$ is dense.

Definition

- 1. An isomorphism $F : A \to B$ is coarsely computable if there is a total computable θ such that $C = \{x : \theta(x) = F(x)\}$ and F[C] are both dense.
- 2. A set isomorphism $F : A \to B$ is a weakly coarsely computable isomorphism if there is a total computable θ which is an isomorphism of the substructure $C = \{x : \theta(x) = F(x)\}$ to F[C] and both sets are dense.

Generically Computably Isomorphic Structures

An equivalence structure A is a (1,2)-structure if it consists of infinitely many classes of size 1 and of size 2.

Fact: There are computable (1,2) structures which are not computably isomorphic.

Theorem

If A and B are computable (1,2)-structures and the classes of size 2 are dense in each, then A and B are generically computably isomorphic.

Sketch: The classes of size 2 form a c.e. set in each structure.

Let $\{a_0, a_1\}, \{a_2, a_3\}, \ldots$ enumerate the classes of size 2 in \mathcal{A} and $\{b_0, b_1\}, \{b_2, b_3\}, \ldots$ enumerate the classes of size 2 in \mathcal{B} .

Define $\phi(a_n) = b_n$ for each *n*. Now extend this arbitrarily to the classes of size 1 to obtain *F*.

On the Other Hand

Theorem

There are computable (1,2)-structure A and B such that the classes of size 1 are dense in each, but A and B are notgenerically computably isomorphic. Sketch: Just let the classes of size 2 compose a simple c.e. set of density 0.

Coarsely Computably Isomorphic Structures

Theorem

If $\mathcal{A} = (\omega, E_A)$ and $\mathcal{B} = (\omega, E_B)$ be are isomorphic (1,2)-structures such that the classes of size 1 are dense in both, then \mathcal{A} and \mathcal{B} are coarsely computably isomorphic. Sketch: Let U_A be the classes of size 1 in \mathcal{A} and U_B the classes of size 1 in \mathcal{B} . Let $U = U_A \cap U_B$.

Then the identity is an isomorphism of (U, E_A) to (U, E_B) .

If $U_A \setminus U$ and $U_B \setminus U$ have different cardinalities, just remove a subset of density 0 from the larger set.

A More General Result

Theorem

Suppose that A and B are computable (1, 2)-structures such that the asymptotic density of the classes of size 2 in each both equal a computable real q. Then A and B are weakly coarsely computably isomorphic.

Idea of Proof: Define the map in stages as we see the proportion of classes of size 2 approach q so the amount of "errors" tends to 0.

Other notions of almost computability

Other equivalence structures beyond (1,2)-structures

Other structures, such as orderings, Boolean algebras, injection structures, *p*-groups

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

THANK YOU