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Muchnik reducibiility

Muchnik reducibility lets us compare “problems”, where a problem
is a subset of either Cantor space 2ω or Baire space ωω.

Definition. P is Muchnik reducible to Q, or P ≤w Q, if every
f ∈ Q computes some g ∈ P.

We are interested in problems of the form [T ], where T is a
computable subtree of 2<ω or ω<ω.

For simplicity, we write T1 ≤w T2 if [T1] ≤w [T2].



TPA

Fact. We write TPA for the usual computable subtree of 2<ω

whose paths represent the completions of PA.

Scott. For all computable trees T ⊆ 2<ω, T ≤w TPA.

Thus, among binary branching trees, TPA lies on top under
Muchnik reducibility.



KP

Kripke-Platek set theory is a weak version of set theory. There are
the usual axioms of extent, pairing, union, and infinity, plus the
following three schemata—in all three, the formula ϕ may have
parameters.

1. Induction
[((∀y ∈ x)ϕ(y)→ ϕ(x))→ (∀x)ϕ(x)],
any ϕ

2. ∆0-separation
(∀v)(∃y)(∀x)[x ∈ y ↔ (x ∈ v & ϕ(x)],
ϕ has only bounded quantifiers

3. ∆0-collection
(∀u)[(∀x ∈ u)(∃y)ϕ(x , y)→ (∃v)(∀x ∈ u)(∃y ∈ v)ϕ(x , y)],
ϕ has only bounded quantifiers



TKP

Fact. There is a computable tree TKP ⊆ ω<ω whose paths
represent the complete diagrams of ω-models of KP.

What do the ω-models of KP look like?

They include all hyperarithmetical sets. The computable ordinals
form an initial segment of the ordinals. There may be further
standard ordinals, and there may also be non-standard ordinals.



Comparing TPA and TKP

The ω-branching tree TKP is in some ways similar to TPA, and in
other ways different.

One difference is that TKP does not lie on top among ω-branching
trees; in fact, no tree lies on top.

Binns-Simpson. For any computable tree T1 ⊆ ω<ω, with paths,
there is a computable tree T2 ⊆ ω<ω, with paths, s.t. T2 6≤w T1

(i.e., some path through T1 does not compute a path through T2).



Tree rank (foundation rank)

Definition. For a tree T and σ ∈ T ,

(1) rk(σ) = 0 if σ has no successors,

(2) for α > 0, rk(σ) = α if σ has successors, all of ordinal rank,
and α is the first ordinal greater than the ranks of all successors
of σ,

(3) rk(σ) =∞ if σ does not have ordinal rank.

We define rk(T ) to be the rank of the top node ∅ in T .



Path or rank?

Fact (ZFC). For a tree T ⊆ ω<ω, T has a path iff it is unranked.

Barwise. If T is a computable tree with no path, then rk(T ) is a
computable ordinal.



Computable trees in ω-models of KP

An ω-model of KP calculates computable ordinal ranks just as we
do. Suppose T is a computable tree. If rk(T ) = α in the real
world, then rk(T ) = α in ω-models of KP. If T has no path in the
real world, then there is no path in ω-models of KP.

Fact: The theorem saying that a tree has a path iff it is unranked
may fail in ω-models of KP.

Proof.
Let T be a computable tree that has paths but no
hyperarithmetical path. Then in LωCK

1
, T is unranked, with no

path.



Trees with paths but no hyperarithmetical paths

(1) The tree TKP has paths but no hyperarithmetical paths.

(2) For a Harrison ordering H, let TH be the tree of decreasing
sequences in H. Again TH has paths but not hyperarithmetical
paths.

Recall what is a Harrison ordering.

Harrison. There is a computable ordering of type ωCK
1 (1 + η) with

no hyperarithmetical decreasing sequence.

Such an ordering is a “Harrison ordering”.



A special Harrison ordering

For later use, we consider a special Harrison ordering.

Goncharov-Harizanov-K-Shore.

(1) The Turing degrees of the well-ordered parts of Harrison
orderings are the same as those of paths through O.

(2) There is a path through O that does not compute ∅′.

Consequence. For a Harrison ordering H in which the
well-ordered part W does not compute ∅′, TH has a path f that
does not compute ∅′. Moreover, we may take f extending any
finite decreasing sequence in H −W .



Existence of ωCK
1

Theorem. In any ω-model of KP, the following are equivalent:

1. Every computable tree is ranked or has a path,

2. ωCK
1 exists; i.e., there is a first ordinal not isomorphic to any

computable ordering.



Trees with non-standard rank

Proposition. There are ω-models of KP in which some
computable trees have non-standard ordinal rank.

Proof.
Let T be a computable tree with paths but no hyperarithmetical
path. Then T has nodes of all computable ordinal ranks. There is
an ω-model M of KP s.t. some σ ∈ T has non-standard rank.
Then Tσ = {τ : στ ∈ T} has non-standard rank.



Computing paths

Note. Let T be a computable tree, and let M ne an ω-model of
KP in which T is unranked. Then Dc(M) computes a path
through T .

Theorem (Weisshaar). Let T1,T2 be computable trees, and let
M be an ω-model of KP in which T1,T2 have non-standard rank,
where rk(T1) ≤ rk(T2). If f is a path through T1, then
f ⊕ Dc(M) computes a path through T2.



Can we drop Dc(M)?

Theorem. There are computable trees T1,T2 s.t. in some
ω-model M of KP, rk(T1) < rk(T2), and some path f through T1

does not (by itself) compute a path through T2.

Idea of proof.

Let TH be the tree of decreasing sequences in a Harrison ordering
H whose well-ordered part does not compute ∅′. Take an ω-model
M of KP, in which some σ ∈ TH and τ ∈ TKP both have
non-standard rank, with rk(σ) < rk(τ). Let T1 be the tree below
σ in TH , let T2 be the tree below τ in TH , and let f be a path
through Tσ that does not compute ∅′.



Is the ordering on ranks determined by the trees?

Theorem. There are computable trees T1,T2 and ω-models
M1,M2 of KP s.t. M1 |= rk(T1) < rk(T2) and
M2 |= rk(T2) < rk(T1).



Independence

Gödel-Rosser. For any computable set A of axioms (extending
PA), let ϕA be the sentence that refers to itself, saying “for any
proof of me from A, there is a smaller proof of my negation”. If A
is consistent, then so are A± ϕ.

We can use this to get the following.

Fact. There are 2ℵ0 completions of PA.

Gödel-Rosser analogue. For a computable set A of axioms
(extending KP), TA is a computable tree whose paths represent
the complete diagrams of ω-models of A. Let ϕA be the sentence
that refers to itself, saying rk(TA+ϕ) ≤ rk(TA+¬ϕ). If A is
ω-consistent, then so are A± ϕ.

Corollary. There are 2ℵ0 ω-consistent completions of KP.



Number of models

Each completion of PA has 2ℵ0 pairwise non-isomorphic models.

For ω-consistent completions of KP, the number of non-isomorphic
ω-models varies.

(1) Th(Lω1) has 2ℵ0 non-isomorphic ω-models.

(2) Th(LωCK
1

) has just one ω-model, up to isomorphism.



Non-minimality

Fact. For any completion T1 of PA, there is another completion
T2 of strictly lower degree.

The analogous statement about complete diagrams of ω-models of
KP is also true.

Theorem. Let M be an ω-model of KP. There is an ω-model N
s.t. Dc(N) <T Dc(M).


