Completions of PA and ω -models of KP

Julia Knight*, Dan Turetsky, and Rose Weisshaar

June 8, 2018

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Muchnik reducibility lets us compare "problems", where a problem is a subset of either Cantor space 2^{ω} or Baire space ω^{ω} .

Definition. *P* is Muchnik reducible to *Q*, or $P \leq_w Q$, if every $f \in Q$ computes some $g \in P$.

We are interested in problems of the form [*T*], where *T* is a computable subtree of $2^{<\omega}$ or $\omega^{<\omega}$.

For simplicity, we write $T_1 \leq_w T_2$ if $[T_1] \leq_w [T_2]$.

Fact. We write T_{PA} for the usual computable subtree of $2^{<\omega}$ whose paths represent the completions of *PA*.

Scott. For all computable trees $T \subseteq 2^{<\omega}$, $T \leq_w T_{PA}$.

Thus, among binary branching trees, T_{PA} lies on top under Muchnik reducibility.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

KP

Kripke-Platek set theory is a weak version of set theory. There are the usual axioms of extent, pairing, union, and infinity, plus the following three schemata—in all three, the formula φ may have parameters.

- 1. Induction $[((\forall y \in x)\varphi(y) \to \varphi(x)) \to (\forall x)\varphi(x)],$ any φ
- 2. Δ_0 -separation $(\forall v)(\exists y)(\forall x)[x \in y \leftrightarrow (x \in v \& \varphi(x)], \varphi$ has only bounded quantifiers
- 3. Δ_0 -collection $(\forall u)[(\forall x \in u)(\exists y)\varphi(x, y) \rightarrow (\exists v)(\forall x \in u)(\exists y \in v)\varphi(x, y)],$ φ has only bounded quantifiers

Fact. There is a computable tree $T_{KP} \subseteq \omega^{<\omega}$ whose paths represent the complete diagrams of ω -models of KP.

What do the ω -models of *KP* look like?

They include all hyperarithmetical sets. The computable ordinals form an initial segment of the ordinals. There may be further standard ordinals, and there may also be non-standard ordinals.

The ω -branching tree T_{KP} is in some ways similar to T_{PA} , and in other ways different.

One difference is that T_{KP} does not lie on top among ω -branching trees; in fact, no tree lies on top.

Binns-Simpson. For any computable tree $T_1 \subseteq \omega^{<\omega}$, with paths, there is a computable tree $T_2 \subseteq \omega^{<\omega}$, with paths, s.t. $T_2 \not\leq_w T_1$ (i.e., some path through T_1 does not compute a path through T_2).

Tree rank (foundation rank)

Definition. For a tree T and $\sigma \in T$,

(1) $rk(\sigma) = 0$ if σ has no successors,

(2) for $\alpha > 0$, $rk(\sigma) = \alpha$ if σ has successors, all of ordinal rank, and α is the first ordinal greater than the ranks of all successors of σ ,

(3) $rk(\sigma) = \infty$ if σ does not have ordinal rank.

We define rk(T) to be the rank of the top node \emptyset in T.

Fact (*ZFC***)**. For a tree $T \subseteq \omega^{<\omega}$, T has a path iff it is unranked.

Barwise. If T is a computable tree with no path, then rk(T) is a computable ordinal.

Computable trees in ω -models of KP

An ω -model of KP calculates computable ordinal ranks just as we do. Suppose T is a computable tree. If $rk(T) = \alpha$ in the real world, then $rk(T) = \alpha$ in ω -models of KP. If T has no path in the real world, then there is no path in ω -models of KP.

Fact: The theorem saying that a tree has a path iff it is unranked may fail in ω -models of *KP*.

Proof.

Let T be a computable tree that has paths but no hyperarithmetical path. Then in $L_{\omega_1^{CK}}$, T is unranked, with no path.

Trees with paths but no hyperarithmetical paths

(1) The tree T_{KP} has paths but no hyperarithmetical paths.

(2) For a Harrison ordering H, let T_H be the tree of decreasing sequences in H. Again T_H has paths but not hyperarithmetical paths.

Recall what is a Harrison ordering.

Harrison. There is a computable ordering of type $\omega_1^{CK}(1+\eta)$ with no hyperarithmetical decreasing sequence.

Such an ordering is a "Harrison ordering".

A special Harrison ordering

For later use, we consider a special Harrison ordering.

Goncharov-Harizanov-K-Shore.

(1) The Turing degrees of the well-ordered parts of Harrison orderings are the same as those of paths through O.

(2) There is a path through O that does not compute \emptyset' .

Consequence. For a Harrison ordering H in which the well-ordered part W does not compute \emptyset' , T_H has a path f that does not compute \emptyset' . Moreover, we may take f extending any finite decreasing sequence in H - W.

Theorem. In any ω -model of *KP*, the following are equivalent:

- 1. Every computable tree is ranked or has a path,
- 2. ω_1^{CK} exists; i.e., there is a first ordinal not isomorphic to any computable ordering.

Proposition. There are ω -models of KP in which some computable trees have non-standard ordinal rank.

Proof.

Let T be a computable tree with paths but no hyperarithmetical path. Then T has nodes of all computable ordinal ranks. There is an ω -model M of KP s.t. some $\sigma \in T$ has non-standard rank. Then $T_{\sigma} = \{\tau : \sigma \tau \in T\}$ has non-standard rank.

Note. Let T be a computable tree, and let M ne an ω -model of KP in which T is unranked. Then $D^{c}(M)$ computes a path through T.

Theorem (Weisshaar). Let T_1 , T_2 be computable trees, and let M be an ω -model of KP in which T_1 , T_2 have non-standard rank, where $rk(T_1) \leq rk(T_2)$. If f is a path through T_1 , then $f \oplus D^c(M)$ computes a path through T_2 .

Can we drop $D^{c}(M)$?

Theorem. There are computable trees T_1 , T_2 s.t. in some ω -model M of KP, $rk(T_1) < rk(T_2)$, and some path f through T_1 does not (by itself) compute a path through T_2 .

Idea of proof.

Let T_H be the tree of decreasing sequences in a Harrison ordering H whose well-ordered part does not compute \emptyset' . Take an ω -model M of KP, in which some $\sigma \in T_H$ and $\tau \in T_{KP}$ both have non-standard rank, with $rk(\sigma) < rk(\tau)$. Let T_1 be the tree below σ in T_H , let T_2 be the tree below τ in T_H , and let f be a path through T_{σ} that does not compute \emptyset' .

Is the ordering on ranks determined by the trees?

Theorem. There are computable trees T_1 , T_2 and ω -models M_1 , M_2 of KP s.t. $M_1 \models rk(T_1) < rk(T_2)$ and $M_2 \models rk(T_2) < rk(T_1)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Independence

Gödel-Rosser. For any computable set A of axioms (extending PA), let φ_A be the sentence that refers to itself, saying "for any proof of me from A, there is a smaller proof of my negation". If A is consistent, then so are $A \pm \varphi$.

We can use this to get the following.

Fact. There are 2^{\aleph_0} completions of *PA*.

Gödel-Rosser analogue. For a computable set A of axioms (extending KP), T_A is a computable tree whose paths represent the complete diagrams of ω -models of A. Let φ_A be the sentence that refers to itself, saying $rk(T_{A+\varphi}) \leq rk(T_{A+\neg\varphi})$. If A is ω -consistent, then so are $A \pm \varphi$.

Corollary. There are $2^{\aleph_0} \omega$ -consistent completions of *KP*.

Each completion of *PA* has 2^{\aleph_0} pairwise non-isomorphic models.

For ω -consistent completions of KP, the number of non-isomorphic ω -models varies.

(1) $Th(L_{\omega_1})$ has 2^{\aleph_0} non-isomorphic ω -models.

(2) $Th(L_{\omega_1^{CK}})$ has just one ω -model, up to isomorphism.

Fact. For any completion T_1 of *PA*, there is another completion T_2 of strictly lower degree.

The analogous statement about complete diagrams of ω -models of KP is also true.

Theorem. Let *M* be an ω -model of *KP*. There is an ω -model *N* s.t. $D^{c}(N) <_{T} D^{c}(M)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <