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Analog and digital computation

Both process infinite data
— typically real numbers,
— originating as physical measurements.

Digital computation:
— data represented by streams of discrete approximations
— computations from input approx’s to output approx’s
— computation is “exact”

Analog computation:
— data rep’d by physical quantities (voltage, displacement, ... )

— processed by networks of mechanical/electrical components
in continuous time

— computation is approximate
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Classical digital computation theory:

e Comprehensive, deep mathematical theory of digital computation
(1930s: Turing, Gdodel, Kleene, Church, ... )

e Generalized to computation on other structures,
e.g. R, C[T,R].




We will use “tracking computability" as paradigm of digital comp.
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Under “reasonable conditions" it is equivalent to:
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— Grzegorczyk-Lacomb computability,
— effective polynomial approximability,

and likely:

— Weihrauch’s TTE.




Analog computation theory:

o Less developed
— Kelvin, Bush, Shannon . ..

e Resurgence of interest

— Marion Pour-El, Olivier Bournez, Felix Costa, Daniel Graga, ...




Why the resurgence of interest in analog computation?

e Interesting theoretical questions in
— computation theory + real analysis

— Interesting issues in philosophy of science:
e.g., nature of physical measurements.

e But what practical use is it?

One answer:




“There is a perceived competition between “analog” and “digital”,
but this ... is a complete fallacy. Digital circuits rule the world.
No one can deny the computational power of desktop computers,
laptops, cell phones ... However, a completely digital
computer would be completely useless ...

“To make a computer useful, we need video and audio inputs and
outputs, which are analog ...

“Analog circuits allow you to listen to music and make your iPod
more than a pretty paperweight ...

“You can build an entirely analog computer ... but you can’t
build an entirely digital computer.”

— Kent H. Lundberg, Introduction to Special Issue on the History of
Analog Computing, IEEE Control Systems Magazine, June 2005




General problem

To show that (or under what conditions) analog systems
have solutions, which are

o well-defined, i.e., unique,

e computable, in the sense of
classical (digital) computability theory.

e stable, i.e., continuous in the parameters.




Significance of continuity

Hadamard’s principle (in the formulation of Courant and Hilbert):

For a scientific problem to be well posed, the solution must
(apart from existing and being unique) depend continuously
on the data.

Note:

Scientific measurement in the presence of noise is only possible
under assumption of continuity of data, to ensure repeatability
and reliability of results.




Analog Network:

An arrangement of modules and channels
carrying data from a complete (separable) metric space A.

e Operates in continuous time T (= non-negative reals)

e Channels carry signals: continuous streams from A,
l.e., continuous functions

u: T — A

e We work with the space
C[T, A] of continuous streams from A.
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A module M has:
e |locations for parameters ci,-...,Cl.
e finitely many input channels u., ..., u,
e one output channel v,

Module function Fym: A xC[T, A — C[T, A],

FM (E, ﬂ,) =




The m modules M4, ..., M,, with module functions F+, ... F,,,

form a network N with

e parameters ¢ =(cy,...,c) €EA".
e input streams T = (x1,...,x,) € C[T, A]P,
o “mixed” streams @ = (uq,...,uy) € C[T, A]™.

So N has a stream transformation function
FN. A™ x C[T, A]® x C[T, A|™ — C[T, A™
as a vector of the module functions Fq,... F,;:
FN@e, z,2) = (F1(el,z!.al),...,Fm(@,.z. . 3.))
where (¢;, z;, u;) are the sublists of (¢,z,u) local to M;.

So N has an equational specification

’U,,,(t) — Fz(éz,,fz,,ﬁz,)(t) (7: — ]_7 Nz t 2 0)
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So N has an equational specification
'Uz(t) - Fz(éz,,fz,,ﬁz,)(t) (7: — ]_,...,m, tZ 0)
Then a solution of (E) is a fixed point of

YN, = FN@Ez, -): C[T,A™ — C[T, A™,

representing an equilibrium state for IN.

We are esp. interested in stream operators like F'gfi. that are

contracting according to the metric on C[T', A] —

Since then, by Banach’s fixed-point theorem:
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Theorem 1 (Solution of network equations (E))
Suppose FY.: C[T,A]™ — C[T,A]™
is contracting at (¢,z) € A" x C[T, A|P.

Then there is a unique stream tuple
@ = FP(FY;

satisfying (E).

e Now consider this fixed point # as a function of ¢,x.

Recall Hadamard’s Principle.
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Continuity and Computability of FP operation
(John Tucker, Nick James, JZ)

Theorem 2 (Continuity of FP operation)
Suppose Fz is contracting and continuous in (¢,z).
Then FP(Fzz) iIs continuous in (¢,z).

Theorem 3 (Tracking computability of FP).

Suppose F'z z satisfies conditions of Thm 2, and further:
F: z is tracking computable.
Then FP(F:z) is tracking computable in (¢,z).
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The Shannon GPAC

We consider the General Purpose Analog Computer (Shannon 1941).
It has 4 basic modules:

e constant:

e adder:
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e scalar multiplier:

o (Stieltjes) integrator:
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Semantics of the GPAC

In general, a GPAC G defines a “fixed-point function"
F:-R" xC[T,R|?» — C[T,R]?

the fixed point(s) of which, i.e., the value(s) of the mixed channel(s),
give the computed function G.

G is well-posed on an open U C dom(G) if F

e exists on U, andis
e Unique and
e continuous on U.
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A simple example:

oy
N G

Here (r=1, p=1, g =1) we have

t
F(c,v,u) = c+/ u(s)dv(s) = u(t).
0
Differentiating both sides:
u'(t) = u(t)v'(t).
This is a linear ODE with solution
u(t) = cexp(v(t) —v(0)).

So this GPAC is well-posed on its domain.
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Characterizing GPAC-computability

A function f: T — R is differentially algebraic on U C T
if f e C¥(T) for some k, and satisfies

P, ft), f'®), ..., f®@) = 0

for some polynomial P in k+ 2 variables, and all t e U.

Theorem 4 (Shannon, Pour-El, Lipshitz & Rubel, Graca & Costa).
Let G be a Shannon GPAC well-posed on some open U C dom(G).
Then the function computed by G is differentially algebraic on U.
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A problem with GPACs:

The gamma function
['(t) = / i~ le %dx
0

is not diff. alg., and so cannot be GPAC-computable.

This is a symptom of a more general problem:
the Shannon GPAC can reason about real-valued functions of
only one independent variable (“time" t).

Replacing the input space C[T, R|]
by C[T,R] x ... x C[T,R]

does not work — even at a conceptual level!
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The solution (Diogo Pocas, thesis) is to replace the output space
C[T,R] by C[T,X]

where X may be a function space
(e.g. X = C[D, R] for a suitable domain D Cc R").

Then the channels carry X-valued streams of data
u:T - X
which under the uncurrying
u:T—-(D—-R) ~ TxD — R.

correspond to functions of n + 1 real variables: t € T, x € D.
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This suggests a generalization of the GPAC to handle
many-sorted data.

An X-GPAC has channels containing functions of £ € X
as well as t.

It has the 4 basic modules of the GPAC:

e constant — w.r.t. time ¢, i.e. a function of  (only)!
e adder
e scalar multiplier

o Stieltjes integrator — integrates w.r.t. t.
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In addition, there is a

o differential module 0, X = X
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Dependingon X (= C(R), C*(R), C*(R), ...),

the operator 9, is (in general) partial, and (not continuous, but)
closed, i.e.

If f, € dom(9,) and f, — f and 0.(f,) — g
then f € dom(9,) and 9.(f) = g.

Hence for X-GPACs, we change our definition (p. 18) of
“well-posedness™ of G on U C dom(G) by

e replacing “continuous” by “closed on U".

Note also:

e The function space X can now be represented (in general)
not as a Banach space, but as a Fréchet space.
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Characterizing xX-GPAC computability

A partial differential algebraic system (PDAS)
on n variables w4, ....u, (representing network channels)
IS a finite set of polynomial identities of the form (cf. p. 20)

P(t, uy,...,un, 8:,3“111,(131), o Ba?‘”ugf“)) = 0,

together with initializing equations for these variables:

(5) (0) =
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As with X-GPACs (p.25), we define:
A PDAS is well-posed on U if it has a solution on U that is

e Uunique and
e defines a closed operator.

Theorem 5 (Pocas).

Let G be an X-GPAC, well-posed on some U C dom(G).
Then the function computed by G is the solution of a
PDAS well-posed on U. (And conversely.)

e Consequences of Thmb5 ...
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e The good news:
From the proof of Thm 5 (converse direction), we can construct
X -GPACs that solve PDEs for functions w(x,t) where the variables
‘c’ and ‘t’ can be separated, e.g

. - ou 92w
(1-dim) heat equation: 5 = 7.7
wave equation: 82_u _ @
d ' ot2 ~ 0x2

transport equation: Ou _ Ou

P q . ot  Ox
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e The bad news:
From Thm 5, we also see that the gamma function is
not X -GPAC computable!

Q. What is missing from the X-GPAC?
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A. The concept of limits of sequences of functions.

So we introduce the “limit" X-GPAC: LX-GPAC, with the (partial)
limit operation

L XN X

and the module

(u,) Jim

L >

This is a partial operation —

defined only on (effective) Cauchy sequences of functions (u.,).
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Computability of the Gamma Function
The gamma function

['(z) =/ t*le~tdt
0

is known to be not diff. alg., and hence not GPAC-computable.

However it can be written as the limit of a sequence of integrals:

n

['(z) = lim ... dt

where the integrals on the r.h.s. are X-GPAC computable.

Hence I'(z) is LX-GPAC computable.
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Similarly, the Riemann zeta function
= 1
((z) = —

n=1

which (for real x > 2) can be re-written as:

((z) = dt

2c o / *  sin(x arctant)
0

z—1 (1 + t2)=/2(emt+D)

can be shown (by a similar technique) to be £LX-GPAC computable.
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AN IMPORTANT PROBLEM:
Comparing the strengths of Analog and Digital Models

We know:
Analog comp. is (in general) weaker than digital comp.:

e GPAC computability = tracking computability,

¥

e X-GPAC computability 2 tracking computability.

e What about LX-GPAC 7?7?77

Pocas showed:
e LX-GPAC computabilty = tracking computability,

but could not prove the converse.
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Conjecture:

LX-GPAC computability 2 tracking computability

(under “reasonable" assumptions).

Assuming this conjecture is true ...

Open Problem:
To find an augmented version £LX-GPACT of LX-GPAC s.t.

LX-GPACt computability <= tracking computability
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Thank you!
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