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Analog and digital computation

Both process infinite data

— typically real numbers,

— originating as physical measurements.

Digital computation:

— data represented by streams of discrete approximations

— computations from input approx’s to output approx’s

— computation is “exact"

Analog computation:

— data rep’d by physical quantities (voltage, displacement, . . . )

— processed by networks of mechanical/electrical components

in continuous time

— computation is approximate
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Classical digital computation theory:

• Comprehensive, deep mathematical theory of digital computation

(1930s: Turing, Gödel, Kleene, Church, . . . )

• Generalized to computation on other structures,

e.g. RRR, CCC[TTT,RRR].
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We will use “tracking computability" as paradigm of digital comp.
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Under “reasonable conditions" it is equivalent to:

— Grzegorczyk­Lacomb computability,

— effective polynomial approximability,

and likely:

— Weihrauch’s TTE.

4



Analog computation theory:

• Less developed

— Kelvin, Bush, Shannon . . .

• Resurgence of interest

— Marion Pour­El, Olivier Bournez, Felix Costa, Daniel Graça, . . .
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Why the resurgence of interest in analog computation?

• Interesting theoretical questions in

— computation theory + real analysis

— interesting issues in philosophy of science:

e.g., nature of physical measurements.

• But what practical use is it?

One answer:
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“There is a perceived competition between “analog” and “digital”,
but this . . . is a complete fallacy. Digital circuits rule the world.

No one can deny the computational power of desktop computers,

laptops, cell phones . . .. . .. . . However, a completely digital
computer would be completely useless . . .. . .. . .

“To make a computer useful, we need video and audio inputs and
outputs, which are analog . . .. . .. . .

“Analog circuits allow you to listen to music and make your iPod
more than a pretty paperweight . . .. . .. . .

“You can build an entirely analog computer . . .. . .. . . but you can’t

build an entirely digital computer.”

— Kent H. Lundberg, Introduction to Special Issue on the History of

Analog Computing, IEEE Control Systems Magazine, June 2005
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General problem

To show that (or under what conditions) analog systems

have solutions, which are

• well­defined, i.e., unique,

• computable, in the sense of

classical (digital) computability theory.

• stable, i.e., continuous in the parameters.
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Significance of continuity

Hadamard’s principle (in the formulation of Courant and Hilbert):

For a scientific problem to be well posed, the solution must
(apart from existing and being unique) depend continuously

on the data.

Note:

Scientific measurement in the presence of noise is only possible
under assumption of continuity of data, to ensure repeatability

and reliability of results.
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Analog Network:

An arrangement of modules and channels

carrying data from a complete (separable ) metric space A.

• Operates in continuous time TTT (= non­negative reals)

• Channels carry signals: continuous streams from A,

i.e., continuous functions

u :TTT → A

• We work with the space

CCC[[[TTT,A]]] of continuous streams from A.
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A module MMM has:

• locations for parameters c1, . . . , cl.

• finitely many input channels u1, . . . ,uk,

• one output channel v,

Module function FFFMMM : Al
×××CCC[[[TTT,A]]]k → CCC[[[TTT,A]]],

FFFMMM(c̄̄c̄c, ū̄ūu) = v
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The m modules MMM1, . . . ,MMMmmm with module functions FFF1, . . . ,FFFmmm,

form a network NNN with

• parameters c̄̄c̄c = (c1, . . . , crrr) ∈∈∈ Arrr.

• input streams x̄̄x̄x = (x1, . . . ,xp) ∈∈∈ CCC[[[TTT,A]]]p,

• “mixed ” streams ū̄ūu = (u1, . . . ,ummm) ∈∈∈ CCC[[[TTT,A]]]mmm.

So NNN has a stream transformation function

FFFN
NN : Arrr

×××CCC[[[TTT,A]]]p ×××CCC[[[TTT,A]]]mmm → CCC[[[TTT,A]]]mmm

as a vector of the module functions FFF1, . . . ,FFFmmm:

FFFN
NN(c̄̄c̄c, x̄̄x̄x, ū̄ūu) = (FFF1(c̄̄c̄c

′

1, x̄̄x̄x
′

1, ū̄ūu
′

1), . . . ,FFFmmm(c̄̄c̄c ′

mmm, x̄̄x̄x ′

mmm, ū̄ūu ′

mmm))

where (c̄̄c̄c ′

iii , x̄̄x̄x
′

iii , ū̄ūu
′

iii ) are the sublists of (c̄̄c̄c,x̄̄x̄x,ū̄ūu) local to MMMiii.

So NNN has an equational specification

viii(t) = FFFiii(c̄̄c̄c
′

iii , x̄̄x̄x
′

iii , ū̄ūu
′

iii )(t) (i = 1, . . . ,m, t≥≥≥ 0) (EEE)
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So NNN has an equational specification

viii(t) = FFFiii(c̄̄c̄c
′

iii , x̄̄x̄x
′

iii , ū̄ūu
′

iii )(t) (i = 1, . . . ,m, t≥≥≥ 0) (EEE)

Then a solution of (E) is a fixed point of

FFFN
NN
c̄̄c̄c,x̄̄x̄x = FFFN

NN(c̄̄c̄c, x̄̄x̄x, · ): CCC[[[TTT,A]]]mmm → CCC[[[TTT,A]]]mmm,

representing an equilibrium state for N .

We are esp. interested in stream operators like FFFNNNc̄̄c̄c,x̄̄x̄x that are

contracting according to the metric on CCC[[[TTT,A]]] —

Since then, by Banach’s fixed­point theorem:
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Theorem 1 (Solution of network equations (E))

Suppose FFFNNNc̄̄c̄c,x̄̄x̄x : CCC[[[TTT,A]]]mmm → CCC[[[TTT,A]]]mmm

is contracting at (c̄̄c̄c, x̄̄x̄x) ∈∈∈ Arrr
×××CCC[[[TTT,A]]]p.

Then there is a unique stream tuple

ū̄ūu = FFFPPP(FFFNNNc̄̄c̄c,x̄̄x̄x)

satisfying (E).

• Now consider this fixed point ū̄ūu as a function of c̄̄c̄c,x̄̄x̄x.

Recall Hadamard’s Principle.
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Continuity and Computability of FP operation

(John Tucker, Nick James, JZ)

Theorem 2 (Continuity of FP operation)
Suppose F c̄̄c̄c,x̄̄x̄x is contracting and continuous in (c̄̄c̄c,x̄̄x̄x).

Then FP(F c̄̄c̄c,x̄̄x̄x) is continuous in (c̄̄c̄c,x̄̄x̄x).

Theorem 3 (Tracking computability of FP).

Suppose F c̄̄c̄c,x̄̄x̄x satisfies conditions of Thm 2, and further :

F c̄̄c̄c,x̄̄x̄x is tracking computable.
Then FFFPPP(F c̄̄c̄c,x̄̄x̄x) is tracking computable in (c̄̄c̄c,x̄̄x̄x).

15



The Shannon GPAC

We consider the General Purpose Analog Computer (Shannon 1941).

It has 4 basic modules:

• constant:

• adder:
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• scalar multiplier:

×k

u ku

• (Stieltjes) integrator:

u
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udv

c
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Semantics of the GPAC

In general, a GPAC GGG defines a “fixed­point function"

F :RRRr ×CCC[TTT,RRR]p →→→ CCC[TTT,RRR]q

the fixed point(s) of which, i.e., the value(s) of the mixed channel(s),
give the computed function G.

GGG is well­posed on an open U ⊆⊆⊆ dom(GGG) if F

• exists on UUU , and is

• unique and

• continuous on UUU .
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A simple example:
u

v u

c

Here (r = 1, p = 1, q = 1r = 1, p = 1, q = 1r = 1, p = 1, q = 1) we have

F (c, v, u) = c+

∫ t

0

u(s)dv(s) = u(t).F (c, v, u) = c+

∫ t

0

u(s)dv(s) = u(t).F (c, v, u) = c+

∫ t

0

u(s)dv(s) = u(t).

Differentiating both sides:

u′(t) = u(t) v′(t).u′(t) = u(t) v′(t).u′(t) = u(t) v′(t).

This is a linear ODE with solution

u(t) = c expexpexp
(

v(t)− v(0)
)

.

So this GPAC is well­posed on its domain.
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Characterizing GPAC­computability

A function f:T→ R

:T→ R:T→ R is differentially algebraic on U ⊆⊆⊆TTT

if f ∈ Ck(T)f ∈ Ck(T)f ∈ Ck(T) for some k, and satisfies

P (t, f(t), f ′(t), . . . , f (k)(t)) = 0P (t, f(t), f ′(t), . . . , f (k)(t)) = 0P (t, f(t), f ′(t), . . . , f (k)(t)) = 0

for some polynomial P in k + 2k + 2k + 2 variables, and all t ∈ Ut ∈ Ut ∈ U .

Theorem 4 (Shannon, Pour­El, Lipshitz & Rubel, Graça & Costa).
Let GGG be a Shannon GPAC well­posed on some open U ⊆ dom(GGG).
Then the function computed by GGG is differentially algebraic on U .

20



A problem with GPACs:

The gamma function

Γ(t) =

∫

∞

0

xt−1e−xdxΓ(t) =

∫

∞

0

xt−1e−xdxΓ(t) =

∫

∞

0

xt−1e−xdx

is not diff. alg. , and so cannot be GPAC­computable.

This is a symptom of a more general problem:
the Shannon GPAC can reason about real­valued functions of

only one independent variable (“time" ttt ).

Replacing the input space CCC[TTT,RRR]

by CCC[TTT,RRR] × . . . ×× . . . ×× . . . × CCC[TTT,RRR]

does not work — even at a conceptual level!

21



The solution (Diogo Poças, thesis) is to replace the output space

CCC[TTT,RRR] by CCC[TTT,X]

where X may be a function space
(e.g. X = C[D, R]= C[D, R]= C[D, R] for a suitable domain D ⊂ R

nD ⊂ R

n
D ⊂ R

n).

Then the channels carry X­valued streams of data

u : T → Xu : T → Xu : T → X

which under the uncurrying

u : T→ (D → R) ≃ T×D → R.u : T→ (D → R) ≃ T×D → R.u : T→ (D → R) ≃ T×D → R.

correspond to functions of n+ 1n+ 1n+ 1 real variables: t ∈ T, x ∈ Dt ∈ T, x ∈ Dt ∈ T, x ∈ D.

22



This suggests a generalization of the GPAC to handle
many­sorted data.

An X­GPAC has channels containing functions of x ∈ Xx ∈ Xx ∈ X

as well as ttt.

It has the 4 basic modules of the GPAC:

• constant — w.r.t. time ttt, i.e. a function of xxx (only)!

• adder

• scalar multiplier

• Stieltjes integrator — integrates w.r.t. ttt.
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In addition, there is a

• differential module ∂xxx: X ⇀⇀⇀ X∂xxx: X ⇀⇀⇀ X∂xxx: X ⇀⇀⇀ X

24



Depending on X ( = CCC(RRR), CCC1(RRR), CCC∞∞∞(RRR), . . .. . .. . . ),

the operator ∂xxx is (in general) partial, and (not continuous, but)

closed, i.e.

If fn ∈∈∈ dom(∂xxx) and fn → f and ∂xxx(fn) → g

then f ∈ dom(∂xxx) and ∂xxx(f) = g.

Hence for X­GPACs, we change our definition (p. 18) of

“well­posedness" of GGG on U ⊆⊆⊆ dom(GGG) by

• replacing “continuous" by “closed on U".

Note also:

• The function space X can now be represented (in general)

not as a Banach space, but as a Fréchet space.
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Characterizing X­GPAC computability

A partial differential algebraic system (PDAS)
on n variables u1, . . . .un (representing network channels)
is a finite set of polynomial identities of the form (cf. p. 20)

P (t, u1, . . . ,un, ∂
α1

x u
(β1)
1 , . . . , ∂ αn

x u(βn)
n ) = 0,

together with initializing equations for these variables:

u
(β)
k (0) = 0.
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As with X­GPACs (p. 25), we define:

A PDAS is well­posed on U if it has a solution on U that is

• unique and

• defines a closed operator.

Theorem 5 (Poças).
Let GGG be an X­GPAC, well­posed on some U ⊆ dom(GGG).
Then the function computed by GGG is the solution of a

PDAS well­posed on U . (And conversely.)

• Consequences of Thm 5 . . .. . .. . .
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• The good news:
From the proof of Thm 5 (converse direction), we can construct

X­GPACs that solve PDEs for functions u(x, t) where the variables

‘x’ and ‘t’ can be separated, e.g

(1­dim) heat equation:(1­dim) heat equation:(1­dim) heat equation:
∂∂∂u

∂∂∂t
=

∂∂∂2u

∂∂∂x2

wave equation:wave equation:wave equation:
∂∂∂2u

∂∂∂t2
=

∂∂∂2u

∂∂∂x2

transport equation:transport equation:transport equation:
∂∂∂u

∂∂∂t
=

∂∂∂u

∂∂∂x
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• The bad news:
From Thm 5, we also see that the gamma function is

not X­GPAC computable !!!

Q. What is missing from the X­GPAC?
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A. The concept of limits of sequences of functions.

So we introduce the “limit" X­GPAC: LLLX­GPAC, with the (partial)

limit operation

L : X N
⇀ X

and the module

L
(un)

lim
n→∞

un

This is a partial operation —

defined only on (effective) Cauchy sequences of functions (un).
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Computability of the Gamma Function

The gamma function

Γ(x) =

∫

∞

0

tx−1e−tdtΓ(x) =

∫

∞

0

tx−1e−tdtΓ(x) =

∫

∞

0

tx−1e−tdt

is known to be not diff. alg., and hence not GPAC­computable.

However it can be written as the limit of a sequence of integrals:

Γ(x) = lim
n→∞

∫ n

1/n

. . . dtΓ(x) = lim
n→∞

∫ n

1/n

. . . dtΓ(x) = lim
n→∞

∫ n

1/n

. . . dt

where the integrals on the r.h.s. are X­GPAC computable.

Hence Γ(x)Γ(x)Γ(x) is LLLX­GPAC computable.
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Similarly, the Riemann zeta function

ζ(x)ζ(x)ζ(x) =

∞
∑

n=1

1

nx

∞
∑

n=1

1

nx

∞
∑

n=1

1

nx

which (for real x ≥ 2x ≥ 2x ≥ 2) can be re­written as:

ζ(x)ζ(x)ζ(x) =
2x

x− 1
− 2x

∫

∞

0

sin(x arctan t)

(1 + t2)x/2(eπt+1)
dt

2x

x− 1
− 2x

∫

∞

0

sin(x arctan t)

(1 + t2)x/2(eπt+1)
dt

2x

x− 1
− 2x

∫

∞

0

sin(x arctan t)

(1 + t2)x/2(eπt+1)
dt

can be shown (by a similar technique) to be LLLX­GPAC computable.
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AN IMPORTANT PROBLEM:
Comparing the strengths of Analog and Digital Models

We know:
Analog comp. is (in general) weaker than digital comp.:

• GPAC computability =⇒
!⇐=

=⇒
!⇐=

=⇒
!⇐=

tracking computability,

• X­GPAC computability =⇒
!⇐=

=⇒
!⇐=

=⇒
!⇐=

tracking computability.

• What about LLLX­GPAC ???

Poças showed:

• LLLX­GPAC computability =⇒=⇒=⇒ tracking computability,

but could not prove the converse.
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Conjecture:

LLLX­GPAC computability =⇒
!⇐=

=⇒
!⇐=

=⇒
!⇐=

tracking computability

(under “reasonable" assumptions).

Assuming this conjecture is true . . .

Open Problem:

To find an augmented version LLLX­GPAC+++ of LLLX­GPAC s.t.

LLLX­GPAC+++ computability ⇐⇒⇐⇒⇐⇒ tracking computability
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