Computing on Streams; Analog and Digital Models

Jeff Zucker

McMaster University, Hamilton, Canada

Joint work with

- John Tucker, Swansea University, Wales
- Nick James, Information Services, Ottawa Hospital, Canada
- Diogo Poças, Tech. University Munich

Workshop on Computability Theory and Applications

Waterloo, June 2018

Analog and digital computation

Both process infinite data

- typically *real numbers*,
- originating as *physical measurements*.

Digital computation:

- data represented by *streams* of *discrete approximations*
- computations from *input approx's* to *output approx's*
- computation is "exact"

Analog computation:

- data rep'd by *physical quantities* (voltage, displacement, ...)
- processed by *networks* of *mechanical/electrical components* in *continuous time*
- computation is *approximate*

Classical digital computation theory:

- Comprehensive, deep mathematical theory of digital computation (1930s: Turing, Gödel, Kleene, Church, ...)
- Generalized to computation on other structures, e.g. R, C[T, R].

We will use "tracking computability" as paradigm of digital comp.

Under "reasonable conditions" it is **equivalent** to:

- Grzegorczyk-Lacomb computability,
- effective polynomial approximability,

and likely:

Weihrauch's TTE.

Analog computation theory:

- Less developed
 - Kelvin, Bush, Shannon ...

• Resurgence of interest

— Marion Pour-El, Olivier Bournez, Felix Costa, Daniel Graça, ...

Why the resurgence of interest in analog computation?

- Interesting *theoretical questions* in
 - computation theory + real analysis
 - interesting issues in *philosophy of science*:
 e.g., nature of physical measurements.
- But what *practical use* is it?

One answer:

"There is a perceived competition between "analog" and "digital", but this ... is a complete fallacy. Digital circuits rule the world. No one can deny the computational power of desktop computers, laptops, cell phones ... However, a *completely digital computer* would be *completely useless* ...

"To make a computer useful, we need video and audio inputs and outputs, which are *analog* ...

"*Analog circuits* allow you to listen to music and make your iPod more than a pretty paperweight ...

"You can build an entirely analog computer ... but you can't build an entirely digital computer."

— Kent H. Lundberg, Introduction to Special Issue on the History of Analog Computing, IEEE Control Systems Magazine, June 2005

General problem

To show that (or under what conditions) analog systems have *solutions*, which are

- well-defined, i.e., unique,
- *computable*, in the sense of *classical (digital) computability theory*.
- *stable*, i.e., *continuous* in the parameters.

Significance of continuity

Hadamard's principle (in the formulation of Courant and Hilbert):

For a scientific problem to be well posed, the solution must (apart from existing and being unique) depend continuously on the data.

Note:

Scientific measurement in the presence of noise is only possible under assumption of *continuity of data*, to ensure *repeatability* and *reliability* of results.

Analog Network:

An arrangement of *modules* and *channels* carrying data from a *complete* (*separable*) *metric space* A.

- Operates in *continuous time* T (= non-negative reals)
- *Channels* carry signals: *continuous streams* from *A*, i.e., continuous functions

$$u:\mathbb{T} \
ightarrow \ A$$

• We work with the space $\mathcal{C}[\mathbb{T}, A]$ of *continuous streams* from A.

A module **M** has:

- locations for *parameters* c_1, \ldots, c_l .
- finitely many *input channels* u_1, \ldots, u_k ,
- one *output channel* v,

The *m* modules M_1, \ldots, M_m with module functions F_1, \ldots, F_m , form a *network* N with

- parameters $\bar{c} = (c_1, \ldots, c_r) \in A^r$.
- *input* streams $ar{x} = (x_1, \dots, x_p) \in \mathcal{C}[\mathbb{T}, A]^p$,
- "*mixed*" streams $\bar{u} = (u_1, \ldots, u_m) \in \mathcal{C}[\mathbb{T}, A]^m$.

So N has a stream transformation function $F^{N}: A^{r} \times C[\mathbb{T}, A]^{p} \times C[\mathbb{T}, A]^{m} \rightarrow C[\mathbb{T}, A]^{m}$

as a *vector* of the module functions F_1, \ldots, F_m :

 $\mathsf{F}^{\mathsf{N}}(\bar{c},\bar{x},\bar{u}) = (\mathsf{F}_1(\bar{c}_1',\bar{x}_1',\bar{u}_1'),\ldots,\mathsf{F}_m(\bar{c}_m',\bar{x}_m',\bar{u}_m'))$

where $(\bar{c}'_i, \bar{x}'_i, \bar{u}'_i)$ are the **sublists** of $(\bar{c}, \bar{x}, \bar{u})$ **local to** M_i .

So **N** has an *equational specification*

$$v_{i}(t) = \mathsf{F}_{i}(ar{c}'_{i},ar{x}'_{i},ar{u}'_{i})(t) \qquad (i=1,\ldots,m, \ t\geq 0)$$

(**E**)

So N has an *equational specification*

 $v_{i}(t) = \mathsf{F}_{i}(ar{c}'_{i},ar{x}'_{i},ar{u}'_{i})(t) \qquad (i=1,\ldots,m, \ t\geq 0)$

(E)

Then a solution of (E) is a *fixed point* of

$$\mathsf{F}^{\mathsf{N}}_{\bar{c},\bar{x}} \;=\; \mathsf{F}^{\mathsf{N}}(\bar{c},\bar{x},\;\cdot\;)\colon \, \mathcal{C}[\mathbb{T},A]^{m} \;\;\to\;\; \mathcal{C}[\mathbb{T},A]^{m},$$

representing an *equilibrium state* for *N*.

We are esp. interested in *stream operators* like $F_{\bar{c},\bar{x}}^{N}$ that are *contracting* according to the metric on $\mathcal{C}[\mathbb{T}, A]$ —

Since then, by *Banach's fixed-point theorem:*

Theorem 1 (Solution of network equations (E))

Suppose $\mathsf{F}^{\mathsf{N}}_{ar{c},ar{x}}\colon \mathcal{C}[\mathbb{T},A]^m \ o \ \mathcal{C}[\mathbb{T},A]^m$

is *contracting* at $(\bar{c}, \bar{x}) \in A^r \times \mathcal{C}[\mathbb{T}, A]^p$.

Then there is a unique stream tuple

$$ar{u} = \mathsf{FP}(\mathsf{F}^{\mathsf{N}}_{ar{c},ar{x}})$$

satisfying (E).

• Now consider this fixed point \bar{u} as a function of \bar{c}, \bar{x} .

Recall Hadamard's Principle.

Continuity and Computability of FP operation

(John Tucker, Nick James, JZ)

Theorem 2 (Continuity of FP operation) Suppose $F_{\bar{c},\bar{x}}$ is *contracting* and *continuous* in (\bar{c},\bar{x}) . Then $FP(F_{\bar{c},\bar{x}})$ is *continuous* in (\bar{c},\bar{x}) .

Theorem 3 (Tracking computability of FP).

Suppose $F_{\bar{c},\bar{x}}$ satisfies conditions of Thm 2, and *further*: $F_{\bar{c},\bar{x}}$ is *tracking computable*. Then $FP(F_{\bar{c},\bar{x}})$ is *tracking computable* in (\bar{c},\bar{x}) .

The Shannon GPAC

We consider the *General Purpose Analog Computer* (Shannon 1941).

It has 4 basic modules:

• constant:

• adder:

Semantics of the GPAC

In general, a GPAC \mathcal{G} defines a "fixed-point function"

 $F: \mathbb{R}^r imes \mathcal{C}[\mathbb{T}, \mathbb{R}]^p \to \mathcal{C}[\mathbb{T}, \mathbb{R}]^q$

the **fixed point(s)** of which, i.e., the value(s) of the mixed channel(s), give the computed function G.

 \mathcal{G} is *well-posed* on an open $U \subseteq \textit{dom}(\mathcal{G})$ if F

- exists on U, and is
- unique and
- continuous on U.

A simple example:

Here (r=1, p=1, q=1) we have

$$F(c, v, u) = c + \int_0^t u(s) dv(s) = u(t).$$

Differentiating both sides:

$$u'(t) = u(t) v'(t).$$

This is a linear ODE with solution

$$u(t) = c \exp(v(t) - v(0)).$$

So this GPAC is **well-posed** on its domain.

Characterizing GPAC-computability

A function $f: \mathbb{T} \to \mathbb{R}$ is **differentially algebraic** on $U \subseteq \mathbb{T}$ if $f \in C^k(\mathbb{T})$ for some k, and satisfies

 $P(t, f(t), f'(t), \ldots, f^{(k)}(t)) = 0$

for some polynomial P in k+2 variables, and all $t \in U$.

Theorem 4 (Shannon, Pour-El, Lipshitz & Rubel, Graça & Costa). Let \mathcal{G} be a Shannon GPAC well-posed on some open $U \subseteq dom(\mathcal{G})$. Then the function computed by \mathcal{G} is differentially algebraic on U. A problem with GPACs:

The gamma function

$$\Gamma(t) = \int_0^\infty x^{t-1} e^{-x} dx$$

is not diff. alg., and so cannot be GPAC-computable.

This is a symptom of a more general problem: the Shannon GPAC can reason about real-valued functions of only one independent variable ("time" t).

Replacing the input space $\mathcal{C}[\mathbb{T},\mathbb{R}]$

by

```
\mathcal{C}[\mathbb{T},\mathbb{R}] \times \ldots \times \mathcal{C}[\mathbb{T},\mathbb{R}]
```

does not work — even at a conceptual level!

The solution (*Diogo Poças*, thesis) is to **replace** the **output space**

 $\mathcal{C}[\mathbb{T},\mathbb{R}]$ by $\mathcal{C}[\mathbb{T},X]$

where X may be a function space (e.g. $X = C[D, \mathbb{R}]$ for a suitable domain $D \subset \mathbb{R}^n$).

Then the channels carry X-valued streams of data

$$u:\mathbb{T} \to X$$

which under the uncurrying

$$u: \mathbb{T} \to (D \to \mathbb{R}) \simeq \mathbb{T} \times D \to \mathbb{R}.$$

correspond to functions of n + 1 real variables: $t \in \mathbb{T}, x \in D$.

This suggests a **generalization** of the GPAC to handle **many-sorted** data.

An X-GPAC has channels containing functions of $x \in X$ as well as t.

It has the 4 **basic modules** of the GPAC:

- constant w.r.t. time t, i.e. a function of x (only)!
- adder
- scalar multiplier
- Stieltjes integrator integrates w.r.t. t.

In addition, there is a

• differential module $\partial_x : X \rightharpoonup X$

$$\xrightarrow{u} \partial_x \xrightarrow{\partial_x u}$$

Depending on X (= $\mathcal{C}(\mathbb{R}), \mathcal{C}^1(\mathbb{R}), \mathcal{C}^\infty(\mathbb{R}), \dots$),

the operator ∂_x is (in general) **partial**, and (**not continuous**, but) **closed**, i.e.

If $f_n \in \operatorname{dom}(\partial_x)$ and $f_n \to f$ and $\partial_x(f_n) \to g$

then $f \in \operatorname{\textit{dom}}(\partial_x)$ and $\partial_x(f) = g$.

Hence for X-**GPACs**, we change our definition (p. 18) of "well-posedness" of \mathcal{G} on $U \subseteq dom(\mathcal{G})$ by

• replacing "continuous" by "closed on U".

Note also:

• The function space X can now be represented (in general) not as a Banach space, but as a Fréchet space.

Characterizing *X*-GPAC computability

A partial differential algebraic system (PDAS)

on n variables u_1, \ldots, u_n (representing network channels) is a finite set of polynomial identities of the form (cf. p. 20)

$$P(t, u_1, \ldots, u_n, \partial_x^{\alpha_1} u_1^{(\beta_1)}, \ldots, \partial_x^{\alpha_n} u_n^{(\beta_n)}) = 0,$$

together with **initializing equations** for these variables:

$$u_k^{(eta)}(0)~=~0.$$

As with X-GPACs (p. 25), we define:

A **PDAS** is *well-posed* on U if it has a **solution** on U that is

- unique and
- defines a closed operator.

Theorem 5 (*Poças*). Let \mathcal{G} be an *X*-**GPAC**, well-posed on some $U \subseteq dom(\mathcal{G})$. Then the function computed by \mathcal{G} is the solution of a **PDAS** well-posed on U. (And conversely.)

• Consequences of Thm 5 ...

• The good news:

From the proof of Thm 5 (converse direction), we can construct X-**GPACs** that solve PDEs for functions u(x, t) where the variables 'x' and 't' can be **separated**, e.g

(1-dim) heat equation:
$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$

wave equation:
$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$$

transport equation:
$$\frac{\partial u}{\partial t} = \frac{\partial u}{\partial x}$$

• The bad news:

From Thm 5, we also see that the gamma function is *not* X-GPAC *computable*!

Q. What is missing from the *X*-**GPAC**?

A. The concept of *limits* of sequences of functions.

So we introduce the *"limit"* X-GPAC: $\mathcal{L}X$ -GPAC, with the (partial) limit operation

$$\mathcal{L}: X^{\mathbb{N}}
ightarrow X$$

and the module

$$\xrightarrow{(\boldsymbol{u}_n)} \mathcal{L} \xrightarrow{\lim_{n \to \infty} \boldsymbol{u}_n}$$

This is a *partial* operation —

defined only on (effective) **Cauchy sequences** of functions (u_n) .

Computability of the Gamma Function

The gamma function

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$$

is known to be not diff. alg., and hence not GPAC-computable.

However it can be written as the limit of a sequence of integrals:

$$\Gamma(x) = \lim_{n \to \infty} \int_{1/n}^n \dots dt$$

where the integrals on the r.h.s. are X-GPAC computable.

Hence $\Gamma(x)$ is $\mathcal{L}X$ -**GPAC** computable.

Similarly, the *Riemann zeta function*

$$\zeta(x) \ = \ \sum_{n=1}^{\infty} \ rac{1}{n^x}$$

which (for real $x \ge 2$) can be re-written as:

$$\zeta(x) = \frac{2^x}{x-1} - 2^x \int_0^\infty \frac{\sin(x \arctan t)}{(1+t^2)^{x/2} (e^{\pi t+1})} dt$$

can be shown (by a similar technique) to be $\mathcal{L}X$ -**GPAC** computable.

AN IMPORTANT PROBLEM: Comparing the strengths of Analog and Digital Models

We know:

Analog comp. is (in general) weaker than digital comp.:

- **GPAC** computability \implies_{\Leftarrow} **tracking** computability,
- X-GPAC computability \implies tracking computability.
- What about $\mathcal{L}X$ -**GPAC**???

Poças showed:

• $\mathcal{L}X$ -**GPAC** computability \implies tracking computability,

but could not prove the converse.

Conjecture: $\mathcal{L}X$ -GPAC computability $\Longrightarrow \underset{\Leftarrow}{\leftarrow}$ tracking computability (under "reasonable" assumptions). Assuming this conjecture is true ... **Open Problem:** To find an *augmented version* $\mathcal{L}X$ -**GPAC**⁺ of $\mathcal{L}X$ -**GPAC** s.t. $\mathcal{L}X$ -**GPAC**⁺ computability \iff tracking computability

