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Diophantine Approximation

Diophantine Approximation classifies real numbers by how well

they may be approximated by rational numbers.

Measured in terms of denominator:

∣∣∣∣x − p

q

∣∣∣∣ < F (q)

For which F does this have infinitely many solutions p/q (with p, q

relatively prime)?

Most commonly: F (q) = 1/qδ
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Dirichlet

For any irrational number α there exist infinitely many rational

numbers p/q such that ∣∣∣∣α− p

q

∣∣∣∣ < 1

q2

Such a sequence is given by the convergents of the continued

fraction expansion

α = [a0; a1, . . . ] = a0 +
1

a1 +
1

a2 + . . .

ai ∈ Z+
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Measuring Irrationality

The irrationality exponent of a real number x is defined as

δ(x) = sup

{
δ : ∃∞p, q

∣∣∣∣x − p

q

∣∣∣∣ < 1

qδ

}
.

Every irrational number has irrationality exponent ≥ 2 [Dirichlet].

A Liouville number is defined by the property δ(x) =∞.

Other examples:

– δ(e) = 2

– δ(π) ≤ 7.60630853
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The Metric Theory

Khinchin: Almost every real has irrationality exponent 2.

In fact, let Ψ : R≥1 → R>0 be a continuous function such that

x 7→ x2Ψ(x) is non-increasing. Then the set

∆(Ψ) =

{
x : ∃∞p, q

∣∣∣∣x − p

q

∣∣∣∣ < Ψ(q)

}
has full Lebesgue measure if∑

q

qΨ(q) =∞,

and has Lebesgue measure zero otherwise.
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The Metric Theory

Jarńık, and independently Besicovitch, showed

dimH{x : δ(x) ≥ δ} =
2

δ

Jarńık’s proof actually shows that

dimH{x : δ(x) = δ} =
2

δ
.
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Jarnik’s Fractal

Let

Gq(a) =

{
x ∈

(
1

qa
, 1− 1

qa

)
: ∃p

∣∣∣∣x − p

q

∣∣∣∣ ≤ 1

qa

}
.

For n sufficiently large, q1 6= q2 prime and n < q1, q2 ≤ 2n,

Gq1(a) ∩ Gq2(a) = ∅ with gaps ≥ 1

8n2
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Jarńık’s Fractal

If we let

Hn(a) =
⋃

q prime
n<q≤2n

Gq(a),

and let (ni ) be a sequence of natural numbers, then⋂
Hni (a)

is a Cantor set (after some trimming) containing only reals with

irrationality exponent ≥ a.

One can show that if (ni ) is sufficiently fast growing, this Cantor

set has dimension at least 2/a.
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Mass Distribution Principle

Let s > 0,X ⊆ R. If µ is a probability measure on R such that

0 < µ(X ) <∞, and there exist ε, c > 0 such that for every

interval I with |I | < ε,

µ(I ) ≤ cεs ,

then

dimH(X ) ≥ s.

8



Mass Distribution on Jarńık’s Fractal

We can uniformly distribute a (unit) mass along a Cantor set and

get a bound for the measure of |I | from

– the number of subintervals in each step

for Jarńık’s fractal: prime number theorem, ≥ n/(2 log n),

– the length of gaps between intervals.
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Effective Dimension

The irrationality exponent reflects how well a real can be

approximated by rational numbers.

Information theoretically: Think of (p, q) as a description of a real

with respect to a very simple decoder: (p, q) 7→ p/q.

The effective dimension [Lutz] reflects how well a real can be

approximated by arbitrary effective decoders:

dimH(x) = lim inf
n→∞

K (x � n)

n
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Effective Dimension and Irrationality Exponent

For a random real x , p/q cannot give significantly more than

2 log q bits of information about x .

Hence almost every real has irrationality exponent 2.

If x ∈ (0, 1) is Liouville, on the other hand, for every n there exist

p/q such that 2 log q bits of information give us n log q bits of x

Hence the effective dimension of a Liouville number is 0 [Staiger]

This line of reasoning can be generalized to obtain

dimH(x) ≤ 2

δ(x)
[Calude & Staiger].
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Diophantine complexity

We can reformulate the irrationality exponent as an “effective

dimension”.

For x ∈ R, let

Kn(x) = min{K (p/q) : |x − p/q| ≤ 2−n}.

(the Kolmogorov complexity at level n).

Then

dimH(x) = lim inf
n

Kn(x)

n

[Lutz & Mayordomo]
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Diophantine complexity

Similarly, let

Dn(x) = min{2 log q : ∃p |x − p/q| ≤ 2−n}.

(the Diophantine complexity at level n).

Then

δ(x) = lim inf
n

Dn(x)

n
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Kolmogorov approximation

This analogy works both ways.

Let

β(x) = sup{b : ∃∞e |ϕe(0)− x | < 1/eb}.

Then dimH x = 1/β(x).

[Slaman]
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Effective Dimension and Irrationality Exponent

Question: How “strong” is diophantine complexity? Are

Hausdorff/effective dimension and irrationality exponent

completely independent?

Can reals have effective dimension β for any 0 ≤ β ≤ 2/δ(x)?
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Hausdorff Dimension vs Irrationality Exponent

Theorem 1

Let δ ≥ 2. For every β ∈ [0, 2/δ] there is a Cantor-like set E such

that dimH(E ) = β and for the uniform measure on E , almost all

real numbers have irrationality exponent δ.
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Features Of The Proof

Basic approach is to ”thin” Jarńık’s fractal – use less intervals at

each step.

However, in a straightforward way this only gets us down to

dimension 1/δ.

We can get past this barrier by choosing only a uniformly spaced

subset of Gq(δ) for a single q each step.

Another problem is that the thinning might concentrate the

measure no longer on reals of irrationality exponent δ.
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Construction Template

Define a family of Cantor sets

E(~q, ~m, ~δ)

– ~q: controls the choice of subintervals (thinning)

– ~m: controls the branching ratio

– ~δ: controls the irrationality exponent (width of the intervals)

We show that for each β, δ, β ≤ 2/δ, one can find suitable ~q, ~m, ~δ

such that every fractal in E(~q, ~m, ~δ) is a subfractal of the

corresponding Jarńık fractal E( ~m, ~δ) and has Hausdorff dimension

β.
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Construction Template

The family E(~q, ~m, ~δ) can be seen as a tree of Cantor sets, since

identical initial thinning choices up to stage n will lead to identical

fractals at stage n.

Use a measure-theoretic pigeonhole argument to construct a path

through E(~q, ~m, ~δ) so that the resulting Cantor set has negligible

measure on reals with irrationality exponent > δ.
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Effective Dimension vs Irrationality Exponent

Theorem 2

Let δ ≥ 2. For every β ∈ [0, 2/δ] there is a Cantor-like set E such

that for the uniform measure on E , almost all real numbers have

irrationality exponent δ and effective dimension β.
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Construction Template

Modifications needed:

– Since δ and β are arbitrary real numbers, we have to work with

approximations rather than the numbers directly.

– Ensure that the compressibility ratio of every member of E obeys

the appropriate upper bound.

– To this end, exhibit a uniformly computable map taking binary

sequences of a fixed, computable length onto the k-th step in the

construction of E .
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Phase Transition?

How gradual is this independence?

If we allow more powerful approximation, will we see it vanish?

Baker and Schmidt extended Jarńık’s result to approximation by

algebraic numbers.

It turns out the stratification with respect to Hausdorff dimension

persists, but an analogue to the Jarńık fractal is much harder to

exhibit (regular systems).

Diophantine approximation in the Grzegorczyk hierarchy?
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Randomness vs Structure

While random reals provide a vast class of numbers that cannot be

well approximated, another instance is provided by algebraic

irrationals.

Let α be algebraic of degree d .

– Liouville: δ(α) ≤ d [1844]

– Thue: δ(α) ≤ 1
2d + 1 [1909]

– Siegel: δ(α) ≤ 2
√
d [1921]

– Roth: δ(α) = 2 [1955]
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Effectivity Issues

Thue’s method is ineffective.

Given a solution p/q with sufficiently large q, he shows that the

existence of another solution r/s with s > q will lead to a

contradiction.

But the solution p/q may not exist at all.

In particular, for δ > 1 + d/2, the exact, finite number of solutions

cannot be extracted from the proof.
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Effectivity Issues

Davenport: There exist a primitive recursive functions κ(d)

(12d + 1 < κ(d) < d) and q(x , y) such that if κ > κ(d) and α is

algebraic of degree d , ∣∣∣∣α− p

q

∣∣∣∣ < 1

qκ

has at most one solution q > q(α, κ).

Upper bounds of this kind have subsequently been obtained for

Roth’s theorem, too, as well as explicit bounds on the number of

solutions [e.g. Bombieri & Davenport, Luckhardt, Bombieri & van

der Poorten, Silverman]
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Effectivity Issues

Question

Is the function

(α, ε) 7→ # of solutions to

∣∣∣∣α− p

q

∣∣∣∣ < 1

q2+ε

computable?
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Generalized Complexity Measures

Let (M, ·, 1) be a monoid.

We call a function C : M → R≥0 ∪ {∞} a complexity measure if

the following hold:

(a) C (1) = 0

(b) C (xy) ≤ C (x) + C (y) for all x , y ∈ M

(c) C (x) ≤ C (xy) + C (y) for all x , y ∈ M

(d) C (xy) = C (yx) for all x , y ∈ M

The pair (M,C ) is called a C -monoid.
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Examples

– Prefix-free Kolmogorov complexity (up to an additive constant)

on set of strings with concatenation (if we restrict (d) to strings of

the same length).

– For a Zariski-closed subset X of kn, let C (X ) be the least degree

of a polynomial vanishing identically on X .

– Any monoid homomorphism C : M → R≥0 ∪ {∞} is a

complexity measure on M. For example, the degree map on the

multiplicative monoid k[x1, . . . , xn].

– Finite measurable partitions of [0, 1] under refinement with

entropy.
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Dimension vs Irrationality Exponent

Suppose M is dense in a metric space (X , d) and for each r > 0,

the set Mr = {m ∈ M : C (m) ≤ r} is finite. For x ∈ X , let

Cn(x) = inf{C (m) : d(x ,m) ≤ 2−n}

and

C (x) = sup{β : ∃∞m d(x ,m) ≤ 2−βC(m)}.

Theorem

For all x ∈ X \M,

lim inf
n

Cn(x)

n
= C (x)−1.
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Generalized Liouville Theorem

Theorem

Let (M,C ) be a c-monoid, let (X , d) be a metric space containing

M. Suppose that x ∈ X is such that there is some locally

Lipschitz, continuous function f on X having x as an isolated zero

such that there is some e > 0 with |f (m)| ≥ C (m)−e for all

m ∈ M in a neighborhood of x .

Then there is a constant D > 0 such that for all m ∈ M in a

neighborhood of x , d(x ,m) ≥ DC (m)−e .

(If inf{C (m) : m ∈ M,m 6= 0} > 0, then this holds for all m ∈ M.)

30



Thank You
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